跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翊民
研究生(外文):Yi-Min Chen
論文名稱:電子-聲振子散射之自由載子吸收在準一維量子結構內之效應
論文名稱(外文):Effect of Electron-Phonon Scattering on Free-Carrier Absorption in Quasi-One-Dimensional Structures
指導教授:吳 啟 宗
指導教授(外文):Chhi-Chong Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:57
中文關鍵詞:量子線砷化鎵光頻聲子聲頻聲子自由載子吸收壓電散射
外文關鍵詞:quantum wiresGaAsoptical phononsacoustic phononsfree-carrier absorptionpiezoelectric scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體中自由載子吸收的量子理論之研究已經延伸到如細量子線之自由載子侷限的準一維量子結構,由於載子的受限制,其在準一維量子結構移動的能量就被量子化了。本文研討由N型砷化鎵半導體製造之準一維量子結構,其自由載子吸收之量子理論,是經由載子與光頻聲子或聲頻聲子之散射所引起的。我們假設半導體內之電子能帶為非拋物線型,考慮的散射機構為 [a]電子-極化光頻聲子的散射,[b]電子-聲頻聲子的散射,及 [c]在Ⅲ-Ⅴ族化合物半導體的壓電散射。若散射由聲頻聲子所引起時,則形變位能耦合或壓電耦合為其主要散射機構。最後數值分析結果顯示,在N型砷化鎵半導體內自由載子吸收係數依散射機構形態、光子頻率、橫向尺度及操作溫度而變化。

The quantum theory of free-carrier absorption in semiconductors is extended to treat the case where the free carriers are confined in quasi-one-dimensional semiconducting structures such as ultrathin quantum wires. As a result of the confinement of the carriers, the energy of the motion of carriers in quasi-one-dimensional structures is size quantized. The free-carrier absorption in these low-dimensional structures fabricated from n-type GaAs has been investigated for the case where the carriers are scattered either by polar optical phonons or acoustic phonons. The energy band of electrons in semiconductors is assumed to be nonparabolic. The scattering mechanisms of the interaction between electrons and phonons we consider here come from [a] electron-polar-optical-phonon scattering, [b] electron-acoustic-phonon scattering, and [c] piezoelectric scattering in III-V compound semiconductors. When the carriers in quasi-one-dimensional semiconducting structures are scattered by the acoustic phonons, the effect of acoustic phonon scattering on the free-carrier absorption coefficient for both deformation-potential coupling and piezoelectric coupling in III-V compound semiconductors are considered. Results show that the free-carrier absorption coefficient in n-type GaAs depends on the scattering types of phonons, photon frequency, transverse dimensions, and operation temperature.

Contents
Chinese Abstract i
English Abstract ii
Acknowledgement iv
Contents v
Figure Captions vi
List of Symbols ix
1. Introduction 1
2. Scattering Theory 3
2.1. Phonon Scattering 8
2.1.1. Longitudinal Acoustic Phonons and The Deformation Potential 10
2.1.2. Polar Optical Phonons 11
2.1.3. Piezoelectric scattering 12
3. The Energy Band Structure and Free-Carrier Absorption in Quasi- One- Dimensional Structures 13
3.1. Electronic States in Thin Quantum-Well Wires of Semiconductors for Non-parabolic Bands 13
3.2. The Electron-Phonon Interaction 15
3.3. The Free-Carrier Absorption in Quasi-One-Dimensional Structures 17
3.3.1. Electron-polar-optical-phonon scattering 20
3.3.2. Electron-acoustic-phonon scattering 22
3.3.3. Piezoelectric scattering 23
4. Numerical Analysis and Discussion 24
Appendix 52
References 54
About the author 57

1. K. H. Ploog , ”Epitaxial Growth of Nanostructured III-V Semiconductors”,K. H. Ploog, L. Tapfer (Eds.), Physics and Technology of Semiconductor Quantum Devices, Proceedings, Mesagne (Brindisi), Italy, Springer-Verlag, p.1, 1992
2. P. M. Frijlink and J. Maluenda, ”MOVPE Growth of Ga1-xAlxAs-GaAs Quantum Well Heterostructures.”, Jpn. J. Appl. Phys. 21, L574(1982).
3. Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, M. Razeghi, and M. A. Poisson, ”Two- dimensinal electron gas in a In0.53Ga0.47As-InP heterojunction grown by metal- organic chemical vapor deposition.”, Appl. Phys. Lett. 40, 877 (1982).
4. K. H. Ploog, R. Nötzel, ”New concepts to fabricate semiconductor quantum wire and quantum dot structures”, K. H. Ploog, L. Tapfer (Eds.), Physics and Technology of Semiconductor Quantum Devices, Proceedings, Mesagne (Brindisi), Italy, Springer-Verlag,p.199, 1992
5. R. Dingle, ”Confined Carrier Quantum States in Ultrathin Semiconductor Hetero- structures”, H.J. Queisser(Ed.), Festkörpeprobleme XV(Advances in Solid State Physics), Viewing, Braunschweig, p.21, 1975.
6. C. M. Sotomayor Torres, P. D. Wang, W. E. Leitch, H. Benisty, and C. Weisbuch, Physics of Semiconductor Quantum Devices Proceedings of the International Meeting, Giardini Naxos, Italy, 24-27 September 1991.
7. P. M. Petroff, A.C. Gossard, R. A. Logan, and W. Wiegman, ”Toward quantum well wires: Fabrication and optical properties.”, Appl. Phys. Lett. 41, 635 (1982).
8. J. J. Baumben, D. A. Williams, and H. Kanbe, ”Ultrafast Acoustic Phonon Ballistics in Semiconductor Heterostrustures.”, Appl. Phys. Lett. 78, 3358(1997).
9. T. Sogawa, S. Ando, H. Ando, and H. Kanbe, ”Photoluminescence excitation spectra in GaAs/AlAs trench-buried quantum wires with 20nm wide rectangular cross-sectional shapes.”, Appl. Phys. Lett 68, 364 (1996).
10. H. Gislason, C. B. Sørensen and , J. M. Hvam, ”(110)oriented GaAs/Al0.3Ga0.7As quantum wells for optimized T-shaped quantum wires”, Appl. Phys. Lett 69, 800 (1996).
11. G. Goldni, F. Rossi, E. Molinari, A. Fasdino, R. Rinaldi, and R. Cingolani, ”Valence band spectroscopy in V-grooved quantum wires.”, Appl. Phys. Lett 69, 2965(1996)
12. H. Adamska and H. N. Spector, ”Free-carrier absorption from electrons in confined systems.”, J. Appl. Phys. 59, 619(1986).
13. C. C. Wu and H. N. Spector, ”Effect of Nonparabolic Band Structure on longitudinal Magnetoacoustic Phenomena.”, Phys. Rev. B 3, 3979(1971)
14. C. C. Wu, ”Theory of total-reflection-mode acoustic- surface-wave amplification in piezoelectric semiconductor films.”, Phys. Rev. B 28, 7094(1983).
15. B. R. Nag, Electron Transport in Compound Semiconductors, Springer-Verlag Berlin Heidelberg New York, 1980.
16. B. R. Nag, Theory of Electrical Transport in Semiconductors, Pergamon, Oxford 1972.
17. F. J. Blatt, Physics of Electronic Conduction in Solids, McGraw-Hill, New York 1968.
18. W. A. Harrison, “ Scattering of Electrons by Lattice Vibrations in Nonpolar Crystals”, Phys. Rev. 104, 1281(1956).
19. M. Lundstrom, Fundamentals of Carrier Transport (Modular series on Solid State Devices X),Addison-Wesley Publishing Company, Inc, p.63, 1990.
20. L. Schiff, Quantum mechanics, McGraw-Hill, New York.1955.
21. C. C. Wu and C. J. Lin, ” Free-Carrier absorption in n-type gallium arsenide films for polar optical phonon scattering.”, J. Appl. Phys. 79, 781(1996).
22. C. C. Wu and C. J. Lin, ” Free-Carrier absorption in n-type piezoelectric semiconductor films.”, J. Phys.: Condens. Matter 6, 10147 (1994).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top