( 您好!臺灣時間:2022/01/19 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Fu Ju Hou
論文名稱(外文):Fabrication and Characterization of SOI FinFETs with Schottky Barrier Source/Drain
指導教授(外文):Tiao Yuan HuangHorng Chih Lin
外文關鍵詞:FinFETSchottky Barrier
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這新元件是以金屬矽化物代替高摻雜的半導體作為源/汲極之用,使得其在製程上較為簡單且製程溫度較低。然而傳統的蕭特基源/汲極元件由於金屬與半導體接面在汲極為高電場下易產生場發射(field emission)的漏電流機制,造成其具有較大之漏電流而大大地降低其開/闗之電流比,也因此扼殺了蕭特基電晶體的實用性。然而在這新元件中加上的汲極延伸(field-induced extensions)結構能完全地抑制此一漏電流機制,且元件導通電流亦隨著延伸區電壓加大而增大,完全地改善了傳統蕭特基源/汲極元件的缺點。
在元件的操作及特性上,以二矽化鈷作為源/汲極的元件在同一個元件上能藉著改變兩個閘極(main-gate and sub-gate)的電壓極性而具有兩種模式(n通道及 p通道)的操作能力,且兩種操作模式都展現了良好的特性。從量測中,我們在同一元件中得到兩種模式操作下的開/闗電流比都接近於109,且因Fin結構的作用, 亦獲得了接近物理極限的次起始斜率(subthreshold slope)值,即趨近於60mV/decade。白金矽化物(PtSi)對p通道而言有著較低之能障高(barrier height) , 因此擁有較大之導通電流,但對n通道而言卻大大地降低了導通特性。另外就傳導係數(transconductance)而言,在p通道操作模式下,白金矽化物源/汲極元件亦比二矽化鈷源/汲極元件來得高。

In this thesis, we proposed and demonstrated a novel nano-scale silicon-on-insulator (SOI) FinFET device. The new device features a metallic silicided source/drain and field-induced S/D extensions. For the device fabrication, the patterning of nano-scale Si lines using electron-beam lithography with NEB-22 or hydrogen silsesquioxane (HSQ) resist was examined firstly. Since the HSQ resist has the advantages of high contrast and less line width fluctuation up to 1nm, the sub-50nm silicon lines can be more easily achieved. Nevertheless, the required high dosage up to several hundreds µC/cm2 and the severe proximity problem make the HSQ unlikely to be used in practical applications. Therefore, NEB-22 e-beam resist, with its potentially higher commercial applicability in the future, was chosen in this work to generate sub-50nm silicon fin patterns. Concomitantly, high etch selectivity between silicon and the underlying silicon dioxide is essential to the nano-scale device fabrication, owing to the use of ultra-thin gate oxide. To overcome this issue, an advanced TCP-9400 poly-Si etcher was employed. An excellent recipe having high etching ratio (up to 200) as well as anisotropic etched profile was successfully developed in this work.
Schottky barrier (SB) MOSFETs generally enjoy simpler and low-temperature processing compared to conventional MOS transistors by employing metallic silicide, in lieu of heavily-doped region, as the source/drain. However, conventional Schottky barrier (SB) MOSFETs were known to suffer from intolerantly high leakage current caused by the field emission of carriers from the drain junction. The high leakage severely degrades the on-/off-state current ratio and essentially rules out their applications to mainstream integrated circuits. In our new device, this problem was effectively solved by the formation of an electrical drain junction which was induced by the sub-gate bias, VG,sub.
Our results show, for the first time, that the new device with Co-silicide source/drain exhibits superior ambipolar characteristics by simply switching the bias polarity on the main-gate and the sub-gate bias. Excellent subthreshold characteristics with high on-/off-state current ratio (close to or higher than 109) and near-ideal subthreshold slope (~ 60 mV/decade) are realized, for the first time, on a single device. Moreover, we show that the new device with Pt-silicided source/drain can further improve the p-channel drivability and transconductance, albeit compromising the capability of bi-channel operation, due to its low barrier height for holes (Φbop = 0.24 V) and a high barrier height for electrons (Φbon = 0.86 V).

Abstract (in Chinese) i
Abstract (in English) iii
Acknowledgement (in Chinese) v
Contents vi
Figure Captions vii
Chapter 1 Introduction 1
1.1 Backgrounds and Motivation 1
1.1.1 Advantages of FinFETs 1
1.1.2 Considerations for Source/Drain series resistance 2
1.2 SB-MOSFETs with Extremely Low Off-State Leakage
Current 2
Chapter 2 Patterning of Si Lines Using E-Beam Lithography
and High Selectivity Plasma Etching 4
2.1 E-Beam Lithography 4
2.2 Plasma Etching 5
Chapter 3 Device Fabrication, Measurements, and Operation
Principle 6
3.1 Device Fabrication 6
3.2 Device Measurements 8
3.3 Operation Principle of Schottky Barrier S/D FinFETs 10
Chapter 4 Results and Discussion 12
4.1 The Effects of Sub-Gate Bias on the Device Performance 12
4.2 Ambipolar Subthreshold Characteristics 13
4.3 Short Channel Effects 14
4.4 Output Performance 15
4.5 SB FinFETs with Pt-Silicided Source/Drain 16
Chapter 5 Conclusions 18
Reference 19

[1] H.-S.P. Wong, D. J. Frank, and P. M. Solomon et al., “Nanoscale CMOS”, Proc. IEEE, Vol. 87, No. 4, p.537, April 1999.
[2] D. Hisamoto, W.-C. Lee, and J. Kedzier et al.,“A Folded-channel MOSFET for Deep-sub-tenth Micron Era”, IEDM Tech. Dig., pp.1032-1034, 1998.
[3] Y.-K. Choi, K. Asano and N. Lindert et al., “Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era”, IEEE Electron Device Letters, Vol. 21, No. 5, pp.254-255, May 2000.
[4] J. Kedzierski, P. Xuan and E. H. Anderson et al., “Complementary silicon source/drain thin-body MOSFETs for the 20nm gate length regime”, IEDM Tech. Dig., pp.57-60, 2000.
[5] S.-I. Takagi, J. Koga and A. Toriumi, ”Subband Structure Engineering for Performance Enhancement of Si MOSFETs”, IEDM Tech. Dig., pp.219-222,1997.
[6] H.-S.P. Wong, D.J. Frank, and P.M. Solomon, “Device Design Considerations for Double-Gate, Ground-Plane, and Single-Gate Ultra-Thin SOI MOSFET’s at the 25nm Channel Length Generation”, IEDM Tech. Dig., pp.407-410, 1998.
[7] L. Chang, S. Tang and T. -J. King et al., ”Gate Length Scaling and Threshold Voltage Control of Double-Gate MOSFETs”, IEDM Tech. Dig., pp.719-722, 2000.
[8] B. Majkusiak, T. Janik and J. Walczak, “Semiconductor Thickness Effects in the Double-Gate SOI MOSFET”, IEEE Trans. Electron Devices, Vol. 45, pp.1127-1134, May 1998.
[9] L. Chang, K.J. Yang and Y.-C Yeo et al.,“Reduction of Direct-Tunneling Gate Leakage Current in Double-Gate and Ultra-Thin Body MOSFETs”, IEDM Tech. Dig., 2001.
[10] X. Huang, W.-C Lee and C. Kuo et al., ”Sub 50-nm FinFET: PMOS”, IEDM Tech. Dig., pp.67-70, 1999.
[11] R.-H. Yan, A. Ourmazd and K.F. Lee, “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Trans. Electron Devices, Vol. 39, pp.1704-1710, July 1992.
[12] Y.-K Choi, D. Ha and T.-J King et al., “Ultra-Thin Body PMOSFETs with Selectively Deposited Ge Source/Drain”, Symposium on VLSI Tech., pp.19-20, 2001.
[13] N. Lindert, L. Chang and Y. -K. Choi et al., “Sub-60-nm Quasi-Planar FinFETs Fabricated Using a Simplified Process”, IEEE Electron Device Letters, Vol. 22, pp.487-489, Oct. 2001.
[14] T. Ohguro, M. Saito and E. Morifuji et al.,“Thermal Stability of C0Si2 Film for CMOS Scalicide”, IEEE Trans. Electron Devices, Vol. 47, pp.2208-2213, Nov. 2000.
[15] C. Wang, J. P. Snyder and J. R. Tucker,“Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistor”, Applied Physics Letters, Vol. 74, pp. 1174-1176, Feb. 1999.
[16] M. P. Lepselter and S. M. Sze, “SB-IGFET: An Insulated-Gate Field-Effect Transistor Using Schottky Barrier for Source and Drain”, Proc. of IEEE, pp. 1400-1401, 1968.
[17] J. R. Tucker, C. Wang, and P. S. Carney, “Silicon field-effect transistor based on quantum tunneling”, Applied Physics Letters, Vol. 65, pp. 618-620, Aug. 1994.
[18] M. Nishisaka and T. Asano,“Reduction of the Floating Body Effect in SOI MOSFETs by Using Schottky Source/Drain Contacts”, Jpn. J. Appl. Phys. Vol.37, Part 1, No. 3B, pp.1295-1299, 1998.
[19] C. —K. Huang, W. E. Zhang, and C. H. Yang, “Two-Dimensional Numerical Simulation of Schottky Barrier MOSFET with Channel Length to 10 nm”, IEEE Trans. Electron Devices, Vol. 45, No. 4, April 1998.
[20] H. C. Lin, C. Y. Lin, K. L. Yeh, R. G. Huang, C. M. Yu, T. Y. Huang, and S. M. Sze, “A novel implantless MOS thin-film Transistor with simple processing, excellent performance and ambipolar operation capability”, IEDM Tech. Dig., pp.857-859, 2000.
[21] H. C. Lin, K. L. Yeh, R. G. Huang, C. Y. Lin, and T. Y. Huang, “Schottky barrier thin-film transistor (SBTFT) with silicided source/drain and field-induced drain extension”, IEEE Electron Device Letters, Vol. 22, pp. 179-181, 2001.
[22] H. C. Lin, K. L. Yeh, R. G. Huang, T. Y. Huang, and S. M. Sze, “Ambipolar Schottky-Barrier Thin-Film Transistors (SBTFT)”, IEEE Trans. Electron Devices, Vol.49, No. 2, pp. 264-270, Feb. 2002.
[23] H. C. Lin, C. Y. Lu, M. F. Wang, and T. Y. Huang, ”Ambipolar Schottky-Barrier SOI MOSFETs”, Proceeding of the 2001 International Semiconductor Device Research Symp., pp. 473-476, 2001.
[24] B. Yu, H. Wang, and C. Riccobene et al.,“Limits of Gate-Oxide Scaling in Nana-Transistors”, Symp. VLSI Tech., pp. 90-91, 2000.
[25] G. Timp, K.K. Bourdelle, and J.E. Bower et al., “Progress toward 10nm CMOS Devices”, IEDM Tech. Dig., pp. 615-617, 1998.
[26] B. Yu, H. Wang, and Q. Xiang et al., “Scaling Towards 35nm Gate Length CMOS”, Symp. VLSI Tech., pp. 9-10, 2001.
[27] Q. Xiang, B. Yu, and H. Wang et al., “High Performance Sub-50nm CMOS with Advanced Gate Stack”, Symp. VLSI Tech., pp. 23-24, 2001.
[28] H. Majima, H. Idhikuro, and T. Hiramoto,“Threshold Voltage Increase by Quantum Mechanical Narrow Channel Effect in Ultra-Narrow MOSFETs”, IEDM Tech. Dig., pp.379-382, 1999.
[29] H. Namatsu, Y. Takahashi, and K. Yamazaki et al.,“Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewith fluctuations”, J. Vac. Sci. Technol. B 16(1), pp. 69-76, 1998.
[30] J.-P. Colinge, “Silicon-on-insulator Technology: Materials to VLSI”, p.132, 1991.
[31] D. J. Wouters, J. —P. Colinge, and H. E. Maes, “ Subshreshold Slop in Thin-Film SOI MOSFET’s”, IEEE Trans. Electron Devices, Vol. 37, No.9, pp. 2022-2032, Sep. 1990.
[32] H. Noda, F. Murai, and S. Kimura, “Threshold Voltage Controlled 0.1-µm MOSFET Utilizing Inversion Layer as Extreme Shallow Source/Drain” IEDM Tech. Dig., pp. 123-126, 1993.
[33] L. E. Calvet, R. G. Wheeler, and M.A. Reed, “Electron transport measurement of Schottky barrier inhomogeneities”, Applied Physics Letters, Vol. 80, No. 10, pp.1761-1763, March 2002.
[34] W. Saitoh, A. Itoh, and S. Yamagami et al., “Analysis of Short-Channel Schottky Source/Drain Meatal-Oxide-Semiconductor Field-Effect Transistor on Silicon-on-Insulator Substrate and Demonstration of Sub-50-nm n-type Devices with Metal Gate”, Jpn. J. Appl. Phys. Vol. 38, Pt1, No. 11, pp. 6226-6231, Nov. 1999.
[35] D. Hisamoto, W. —C Lee, and J. Kedzierski et al., “FinFET-A Self-Aligned Double-Gate MOSFET Scalable to 20 nm”, IEEE Trans. Electron Devices, Vol. 47, No. 12, Dec. 2000.
[36] Y. —K. Choi, T. —J. King, and C. Hu, “A Spacer Patterning Technology for Nanoscale CMOS”, IEEE Trans. Electron Devices, Vol. 49, No. 3, pp. 436-441, March 2002.
[37] H. Noda, F. Murai, and S. Kimura, “Short channel characteristics of Si MOSFET with extreme shallow source and drain regions formed by inversion layers”, IEEE Trans. Electron Devices, Vol. 41, pp. 1831-1836, Oct. 1994.

第一頁 上一頁 下一頁 最後一頁 top