(3.239.192.241) 您好!臺灣時間:2021/03/02 13:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭政傑
研究生(外文):Peng, Jeng-Jie
論文名稱:積體電路之高可靠度與低寄生電容銲墊設計
論文名稱(外文):High-Reliability and Low-Capacitance Bond Pad Design for CMOS Integrated Circuits
指導教授:柯明道柯明道引用關係
指導教授(外文):Ker, Ming-Dou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:71
中文關鍵詞:銲墊銲線固著度拉線測試推球測試佈局低電容銲墊漏電流熱衝擊試驗
外文關鍵詞:bond padbond wire reliabilitywire pull testball shear testlayoutlow capacitance padleakage currentthermal shock test
相關次數:
  • 被引用被引用:1
  • 點閱點閱:423
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然新的封裝技術不斷地推陳出新,線銲封裝仍是今日積體電路產品封裝型式的主流。本論文提出三種相連貫的方法以解決在積體電路產品的應用上,銲墊所面臨的問題。
首先,在線銲封裝過程中,常會發生銲線脫落或斷裂的問題。經實驗證實,將銲墊的最上層金屬保持不變,藉由選用適當的第二上層金屬層及連接第二上層金屬層的連接栓的佈局圖案,即可改善線銲封裝時,銲墊固著度的問題。
再者,銲墊本身所存在的寄生電容效應,已使得在高頻電路上的設計遇到瓶頸。在前述改善銲墊固著度問題的過程中,觸發了一個想法:改變銲墊金屬層的佈局圖案為骨架式的佈局形式,並在金屬層下方加上擴散層,將可降低銲墊的寄生電容效應。經實驗證實此法可以有效降低銲墊本身的寄生電容值。這個結果已經實際應用到許多的積體電路產品上。
最後,由於系統晶片時代的來臨,不僅晶片上電路的集積度愈來愈高,銲墊的個數也愈來愈多。這使得銲墊所佔全晶片的面積比例居高不下。為提昇晶片上的有效面積使用率,將主動元件置放於前述具骨架式金屬層佈局圖案的銲墊正下方,以節省晶片總面積將是一個可行的方法。經本研究之實驗證實,置放於銲墊下方的N型金氧半導體電晶體,在經過不同銲線打線力道之試驗與封裝後,其元件直流特性仍能維持在合理且可接受的範圍內。這除了有效地節省了晶片的總面積,也使得未來靜電放電保護電路或輸出/輸入元件的設計與擺置更加具有彈性。
Wire bond package is still the mainstream of IC packages although different advanced package technologies, such as chip on board (COB), flip chip, chip scale package (CSP), and multi-chip module (MCM), are available today. In this thesis, there are three correlated approaches of bond pad designs of wire bond IC products proposed for reliability improvement, parasitic capacitance reduction, and layout area saving for system-on-a-chip (SOC) applications.
During manufacture of wire bonding in packaged IC products, the breaking of bond wires and the peeling of bond pads occur frequently, which results open-circuit failure in IC products. There were several prior methods reported to overcome these problems by using additional process flows or special materials but all with additional cost. In this thesis, a layout method is proposed to improve the bond wire reliability in general CMOS processes. By changing the layout patterns of bond pads, the reliability of bond wires on bond pads can be improved. The proposed layout method for bond pad design is fully process-compatible to general CMOS processes.
Large parasitic capacitance of conventional bond pad structure is a serious problem in high frequency IC application. A new structure design of bond pad is proposed to reduce its parasitic capacitance in general CMOS processes without extra process modification. The proposed bond pad, which is modified from the layout method for improving bond wire reliability, is constructed by connecting multi-layer metals and inserting additional diffusion layers into the substrate below the metal layers. The experimental results show that the proposed low-capacitance bond pad has a capacitance less than 50% of that in the traditional bond pad. The proposed bond pads can also keep the same good bonding reliability as that of traditional bond pad.
To save layout area for electrostatic discharge (ESD) protection design in the SOC era, test chip with large size NMOS devices, which are designed under bond pads with different layout pattern designs of metal layers, was fabricated for verification. Threshold voltage, off-state drain current, and gate leakage current of these devices under bond pads were measured. After assembled in the wire bond package, the measurement results show that there are only little variations between devices under bond pads and devices beside bond pads. This discovery can be applied on saving layout area for on-chip ESD protection devices or I/O devices of IC products, especially when the IC’s have high pin counts.
CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENTS iv
CONTENTS v
TABLE CAPTIONS vii
FIGURE CAPTIONS viii
CHAPTER 1 INTRODUCTION 1
1.1 Wire Bond Reliability Issue 1
1.2 Low-Capacitance Issue 2
1.3 Issues of Device Placing under Bond Pad 2
1.4 Thesis Organization 2
CHAPTER 2 FULLY PROCESS-COMPATIBLE LAYOUT DESIGN ON BOND PAD TO IMPROVE WIRE BOND RELIABILITY 4
2.1 Introduction 5
2.2 Layout Design for Increasing Bond Wire Reliability 6
2.3 Experimental Results 8
2.4 Discussion 10
2.5 Summary 12
Figures of Chapter 2 13
CHAPTER 3 DESIGN ON THE LOW-CAPACITANCE BOND PAD FOR HIGH-FREQUENCY I/O CIRCUITS 23
3.1 Introduction 23
3.2 Low-Capacitance Bond Pad 25
3.3 Experimental Results 28
3.4 Summary 30
Table of Chapter 3 32
Figures of Chapter 3 33
CHAPTER 4 INVESTIGATION ON DEVICE LEAKAGE CAUSED BY BOND WIRE PACKAGING PROCESS FOR DEVICE PLACING UNDER BOND PAD 41
4.1 Introduction 41
4.2 Design of Device under Bond Pad 42
4.3 Experimental Results 45
4.4 Summary 51
Figures of Chapter 4 53
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 64
5.1 Conclusions 64
5.2 Future Works 65
REFERENCES 66
VITA 69
PUBLICATION LIST 70
[1] T. B. Ching and W. H. Schroen, “Bond pad structure reliability,” in Proc. of IEEE Int. Reliability Physics Symp. (IRPS), 1988, pp. 64-70.
[2] F. Kuechenmeister and E. Meusel, “Polypyrrole as an interlayer for bonding conductive adhesives to activated aluminum bond pads,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, vol. 20, pp. 9-14, Mar. 1997.
[3] T. Rouaud and M. Robin, “Method of adhesively bonding mineral particles to support,” US Patent #5695592, 1997.
[4] K. G. Sachdev, M. Berger, and M. S. Chace, “Solvent-free epoxy based adhesives for semiconductor chip attachment and process,” US Patent #5700581, 1997.
[5] R. B. Danzl and A. McLaurin, “The use of concentrated hydrogen peroxide for the removal of a TiW ARC from aluminum bond pads,” in Proc. of IEEE Int. Electronics Manufacturing Technology Symp. (IEMT), 1997, pp. 99-104.
[6] M. Saran, et al., “Elimination of bond-pad damage through structural reinforcement of intermetal dielectrics,” in Proc. of IEEE Int. Reliability Physics Symp. (IRPS), 1998, pp. 225-231.
[7] R. C. Langley, “Semiconductor device with improved bond pads,” US Patent #5686762, 1997.
[8] R. W. Fiordalice, P. D. Maniar, J. L. Klein, and B. J. Roman, “Method for forming a plug and semiconductor device having the same,” US Patent #5534462, 1996.
[9] R.-Y. Shiue, W.-T. Wu, P.-C. Shieh, and C.-K. Liu, “Method of forming bond pad structure for the via plug process,” US Patent #5700735, 1997.
[10] M.-S. Hsiao, “Bonding pad structure and method thereof,” US Patent #5707894, 1998.
[11] Y. M. Lee, J. H. Cho, Y. B. Sun, and N. S. Kim, “Heel cracking induced by the steep conversion of EMC in large QFP,” in Proc. of IEEE Int. Electronics Manufacturing Technology Symp. (IEMT), 1997, pp. 201-204.
[12] R. G. McKenna and R. L. Mahle, “High impact bonding to improve reliability of VLSI die in plastic packages,” in Proc. of IEEE Electronic Components Conf., 1989, pp. 424-427.
[13] T. L. Heleine, R. M. Murcko, and S.-C. Wang, “A wire bond reliability model,” in Proc. of IEEE Int. Electronics Manufacturing Technology Symp. (IEMT), 1991, pp. 378-381.
[14] Bond Strength (Destructive bond pull test), MIL-STD-883E Method 2011.7, US Military, 1989.
[15] J.-J. Peng, M.-D. Ker, N.-M. Wang, and H.-C. Jiang, “Layout design on bond pads to improve the firmness of bond wire in packaged IC products,” in Proc. of IEEE Int. Symp. on VLSI Technology, Systems, and Applications (VLSI-TSA), 1999, pp. 147 -150.
[16] B. Ballweber, R. Gupta, and D. J. Allstot, “Fully-integrated CMOS RF amplifiers,” in Digest of IEEE Int. Solid-State Circuits Conf. (ISSCC), 1999, pp. 72-73.
[17] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3V RF applications (2GHz) in a 0.18 mm CMOS process,” in Proc. of EOS/ESD Symp., 2000, pp. 251-259.
[18] B. Kleveland, T. J. Maloney, I. Morgan, L. Madden, T. H. Lee, and S. S. Wong, “Distributed ESD protection for high-speed integrated circuits,” IEEE Electron Device Letters, vol. 21, pp. 390-392, Aug. 2000.
[19] C.-Y. Chang and M.-D. Ker, “On-chip ESD protection design for GHz RF integrated circuits by using polysilicon diodes in sub-quarter-micron CMOS process,” in Proc. of IEEE Int. Symp. on VLSI Technology, Systems, and Applications (VLSI-TSA), 2001, pp. 240-243.
[20] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, and H.-H. Chang, “ESD protection design on analog pin with very low input capacitance for RF or current-mode applications,” in Proc. of IEEE Int. ASIC/SOC Conf., 1999, pp. 352-356.
[21] M.-D. Ker, T.-Y. Chen, C.-Y. Wu, and H.-H. Chang, “ESD protection design on analog pin with very low input capacitance for high-frequency or current-mode applications,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1194-1199, Aug. 2000.
[22] M.-D. Ker, H.-C. Jiang, and C.-Y. Chang, “Design of low-capacitance bond pad for high-frequency I/O applications in CMOS integrated circuits,” in Proc. of IEEE Int. ASIC/SOC Conf., 2000, pp. 293-296.
[23] C. C. Hsue and S. C. Chien, “Polycide bonding pad structure,” US Patent #5734200, Mar. 1998.
[24] R. Y. Shiue, W. T. Wu, P. C. Shieh, and C. K. Liu, “Method of forming bond pad structure for the via plug process,” US Patent #5700735, Dec. 1997.
[25] D. A. Heim, “Composite bond pad for semiconductor devices,” US Patent #5248903, Sept. 1993.
[26] W. R. Anderson, W. M. Gonzalez, S. S. Knecht, and W. Fowler, “ESD protection under wire bonding pads,” in Proc. of EOS/ESD Symp., 1999, pp. 88-94.
[27] K.-Y. Chou and et al., “Die cracking evaluation and improvement in ULSI plastic package,” in Proc. of IEEE Int. Conf. on Microelectronic Test Structures, 2001, vol. 14, pp. 239-244.
[28] K.-Y. Chou and M.-J. Chen, “ESD protection under grounded-up bond pads in 0.13µm eight-level copper metal, fluorinated silicate glass low-k international dielectric CMOS process technology,” IEEE Electron Device Letters, vol. 22, no. 7, pp. 342-344, July 2001.
[29] Temperature Cycling, MIL-STD-883E Method 1010.7, US Military, 1987.
[30] Thermal Shock, MIL-STD-883E Method 1011.9, US Military, 1990.
[31] TSMC 0.35µm logic silicide SPQM 3.3V process PCM specification, TSMC, Mar. 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔