跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉俊男
研究生(外文):Chun-Nan Yeh
論文名稱:一種指紋分類之研究
論文名稱(外文):A study on Fingerprint Classification
指導教授:陳玲慧陳玲慧引用關係
指導教授(外文):Ling-Hwei Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:54
中文關鍵詞:指紋分類特徵點
外文關鍵詞:fingerprintclassificationsingularity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
指紋分類為指紋系統提供了一種重要的索引機制. 一個正確的指紋分類能大大的降低尋找時間於一個大型的資料庫系統.本論文提出一種指紋分類的方法. 在我們提出的方法裡, 將指紋歸於五類, 即為Arch, left loop, right loop, whorl, and tented arch.本論文的方法的主要步驟有指紋圖像加強,方向矩陣的萃取,特徵點的萃取,分類. 最後我們共用了1900 枚姆指指紋做測試, 實驗結果得到88 % 的分類正確率.

Fingerprint classification provides an important indexing mechanism in a fingerprint database. An accurate and consistent classification can greatly reduce the fingerprint matching time for a large database. In this thesis, we present a new classification method for fingerprint images. In the proposed method, we classify fingerprints into five classes: arch, left loop, right loop, whorl, and tented arch. The major steps of this method include image enhancement, direction matrix extraction, singular points extraction and classification. Finally, we use the 1900 thumb fingerprints of NIST-4 database to evaluate the performance of the proposed method. The experimental result shows that we are able to achieve a classification accuracy of 88 percent (with 10% rejection).

Chapter 1 Introduction……………………...1
1.1 Motivation……………………………...….1
1.2 Review of related works………..…..…2
1.3 Organization of …………….………7
Chapter 2 Directional Matrix Extraction…………………..8
2.1 Border Area Removing………………………………8
2.2 Fingerprint Image Enhancing………………….10
2.3 Directional matrix Extraction………………….15
Chanter 3 Singular points Extraction ……………….19
3.1 Detection of singularity……………………….. 19
3.2.1 Core point Masks…………………………………….…..20
3.2.2 Delta point Masks…………………….…….23
3.3 Detection process……………………………....24
3.4 Noisy image Rejection……………………27
Chapter 4 Classification………………………30
Chapter 5 Experimental Results…………………..36
5.1 Input Data Set ………………………………….36
5.2 Experiment results……………………..36
Chapter 6 Conclusions.…………………………………42
REFERENCE..……………………………………………………..44

REFERENCE
[1] A. K. Jain, S. Prahakar, and L. Hong, “A Multichannel approach to fingerprint classification,” IEEE Tran. On Pattern Analysis and Machine Intelligence, Vol. 21, No. 4, pp. 348-359, 1999.
[2] K. Karu, and A. K. Jain, “Fingerprint Classification,” Pattern Recognition, Vol. 29, No. 3, pp. 389-404, 1996.
[3] L. Hong and A. K. Jain, “Classification of fingerprint Images,” Technical
Report MSUCPS: TR98-18, Michigan State Univ., June 1998.
[4] A. P. Fitz and R. J. Green, “Fingerprint Classification Using Hexagonal Fast Fourier Transform,” Pattern Recognition, Vol. 29, No. 10, pp. 1587-1597, 1996.
[5] C.V.K. Rao and K. Black, ”Type Classification of fingerprint: A syntactic Approach,” IEEE Tran. On Pattern Analysis and Machine Intelligence, Vol. 2, No. 3, pp. 223-231, 1980.
[6] C. J. Lee and S.D. Wang and K. P. Wu, “Fingerprint feature extraction using Gabor filters,” Electronics Letters, Vol. 35, No. 4, pp. 288-290, 1999.
[7] C.J. Lee and S.D. Wang, “Fingerprint recognition using principal Gabor basis function,” Intelligent Multimedia, Video and Speech Processing, Proceedings of 2001 International Symposium on 2001, pp 393-396, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top