跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政綱
論文名稱:半導體後段製程誘發之高阻抗研究
論文名稱(外文):Study of BEOL Process Induced High Resistance in IC's Manufacturing
指導教授:張國明
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:67
中文關鍵詞:製程誘發後段製程高阻抗
外文關鍵詞:Process Induced EffectsBEOL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
這篇論文研究兩個關於半導體後段製程的主題。其一為製程誘發的高接觸窗阻抗,另一為製程誘發的金屬內連線異常片電阻。
在第一個主題中,發現接觸窗電阻在相同的製程條件下,不僅和接觸面積有關,而且與argon之濺擊蝕刻、接觸洞形狀及下緣金屬表面之抗反射層狀態有關。
在argon濺擊蝕刻時,加速的argon離子會濺擊接觸洞的內壁,導致內壁的氧化層剝落,而掉落至接觸洞的底部。這剝落的氧化層會縮小接觸窗的面積,影響接觸介面品質,而增加了接觸阻抗。
接觸洞的傾斜角也會影響接觸阻抗。傾斜角愈大,接觸洞內壁對於argon離子的接受面積也會增大。因此,剝落氧化層效應也會增加,而影響了接觸阻抗。
底層金屬的抗反射層之表面狀態也是重要的因素。在接觸洞蝕刻的過程中,遭受損傷的抗反射層將會導致高接觸阻抗。可得結論為:argon濺擊蝕刻後,鈦氧化物的部分殘留為導致高阻抗之主要因素。
在接觸窗蝕刻中產生的含鈦聚合物也是影響接觸阻抗的重要因素。在接觸窗蝕刻的配方中,被證實加入氮氣將可改善鈦聚合物的問題。採取鈦軟化蝕刻製程也可有效地去除鈦聚合物。
根據研究的結果顯示:較直的接觸洞形狀、恰當的argon濺擊條件、未受損傷的接觸介面及無聚合物的接觸洞可以得到較穩定的接觸阻抗。
本篇論文之另一研究主題為製程誘發的金屬內連線異常片電阻。顯影液氧化金屬內連線所產生的圓形缺陷會導致高片電阻及內連線的短路。實驗結果發現:採用較厚的抗反射層,內連線金屬表面臭氧處理及加入鈦應力紓解層皆能改善此圓形缺陷。
在光阻重工製程所導致的金屬殘留,也會影響內連線片電阻。內連線抗反射層之鈦氧化物會成為內連線蝕刻時的硬罩幕,此硬罩幕會變成蝕刻的障礙,而導致不完全蝕刻,造成金屬殘留。藉由控制光阻重工時的製程溫度,及使用液體去除液皆可有效地防止金屬殘留。不過上述之方法將會導致產能的降低與成本的提高。

Abstract
In this thesis, there are two topics of BEOL (Back End of Layers) process to be studied. One is the study of process-induced high via contact resistance problem. The other is the study of process-induced abnormal interconnection line sheet resistance.
On the first topic about the via hole contact resistance, it was interesting to find that the via hole contact resistance was not simply related to the contact area on the base of the same process conditions. It was found that all the Ar (argon) sputtering etch (before plug deposition), the via hole profile (taper angle) and the damaged TiN ARC (anti-reflective coating) layer of the bottom metal line would affect the via hole contact resistance.
During argon sputtering process, the accelerated argon ions will sputter the sidewall of the via holes to cause chipping oxide drop on the bottom of the via hole. The chipping sidewall oxide will shrink the contact area, and impact the contact interface quality and finally increase the contact resistance.
The taper angle of the via hole profile also affects the contact resistance.
The more taper the via profile is, the larger the acceptance area of via sidewall is. Therefore, the chipping oxide effect increases and influences the contact resistance.
The surface condition of the ARC layer of the bottom metal line is also an important factor. The damaged ARC layer surface during via etching will cause extremely high contact resistance. It was concluded that the incomplete titanium-oxide removal by argon sputtering is the dominant factor.
Titanium contained polymers generated during via etching are also a key factor which impacts the via resistance. It was proved that nitrogen gas added in the via etching process would improve the Ti-polymer problem. It is also effective to adopt a Ti softened etching process to remove Ti polymers.
According to the results of the study, to obtain a stable contact resistance is to get a more vertical via profile, an optimized argon sputtering condition, a non-damaged contact surface, and polymers free via holes.
The other topic in this thesis is the study of process induced abnormal sheet resistance of interconnection lines. Circular defects resulting from the attack of the developer will cause high sheet resistance and short circuit of the interconnection lines. It is found that to get thicker ARC TiN, to adopt ozone treatment after metal film deposition, and to insert a stress relief layer of Ti all would improve the circular defects problem.
Metal residues resulting from the rework process of photo resist also impact sheet resistance of the interconnection lines. The oxidation of the ARC titanium may be served as the hard mask during etching the line pattern. This hard mask is an etching obstacle which causes incomplete etching and results in metal residues. It was proved effectively to eliminate metal residues by controlling ashing temperature and with wet stripper. The disadvantages of these strategies are impacts on throughput and lots of cost.

Contents
Chinese Abstract ………………………………………………………..…… i
English Abstract……..……………..…………..……………….……………. iii
Acknowledgements……………..…………..……………..…………………. v
Contents………..……………..…………..……………….……………..…... vi
Table Captions……..……………..…………..……………….…………….. viii
Figure Captions……..……………..…………..……………….…………….. vi
Chapter 1 Introduction……………………………………………………. 1
Chapter 2 Experiments Preparation ……………………………………. 4
2.1 The process flow of via/contact testing wafers………………………. 4
2.2 The process flow of metal testing wafers…………………………….. 8
Chapter 3 High contact resistance caused by process induced effects…. 10
3.1 The evaluation of the effects of argon sputtering process on
contact resistance……………………………………………………. 10
3.1.1 Argon sputtering quantities and IMD thickness correlation to
via resistance…………………………………………………… 11
3.1.2 The effects of the via taper angle on via resistance……………. 14
3.2 The evaluation of the effects of via etching process on contact
resistance…………………………………………………………….. 16
3.2.1 Ti-polymer residue issue after via hole etching and post etch
clean process…………………………………………………… 16
3.2.2 Effects of the ARC TiN conditions on contact resistance in via
etching process…………………………………………………. 20
Chapter 4 Abnormal interconnection line sheet resistance caused
by process induced effects ……………………………….. 23
4.1 The abnormal line sheet resistance caused by film stress induced
circular defects………………………………………………….. 23
4.2 The abnormal line sheet resistance caused by photo resist rework
process…………………………………………………………... 26
Chapter 5 Conclusions……………………………………………….. 30

References
1. James D. Plummer et al., Silicon VLSI Technology, Prentice Hall, New Jersey, 2000.
2. S.M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley & Sons, Inc., Taipei, Taiwan, 1985.
3. Michael A. Leiberman, Allan J. Lichtenberg, Principles of Plasma Discharges and Materials processing, Wiley Interscience, New York, 1994.
4. Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, New Jersey, 2001.
5. Stanley Wolf Ph.D., Silicon Processing for the VLSI Era, Lattice Press, CA, 1990.
6. S.O. Kasap, Principles of Electrical Engineering Materials and Devices, Mcgraw-Hill Higher Education, Singapore, 2000.
7. Po-Tao Chu et al., “Post Etching Treatment for Via Etched Byproduct (Ti polymer) Reduction”, Dumic Conference, February 16-17, pp.275-278, 1998.
8. J.E. Spencer, “Management of A1C13 in Plasma Etching Aluminum and Its Alloys”, Solid State Technology, p203, April 1984.
9. W.M. Lee, et al., “Metal Corrosion in Wet Resist-Stripping Process”, KTI Interface, p197, 1989.
10. L.H. Kaplan and B.K. Bergin, “Residue from Wet Processing of Positive Resists”, J Electrochem. Soc., Vol.127, No. 2, P986, 1989.
11. K. Braziano, C. Allen and H.Y. Liu, “Surface Characterization of Aluminum Substrate Exposed to Photoresist Developers,” Journal of SPIE, Advances in Resist Technology and Processing, 1989.
12. M. Armacost, et al., “Plasma-etching processes for ULSI semiconductor circuits”, IBM J. RES. DEVELOP. VOL.43 NO.1/2 , pp.67-69, January/March, 1999
13. S. J. Fonash. “Plasma processing damage in etching and deposition”, IBM J. RES. DEVELOP. VOL.43 NO.1/2 , pp.103-106, January/March, 1999
14. S. J. Fonash, C. R. Viswanathan, and Y. David Chan, “A Survay of Damage Effects in Plasma Etching”, Solid State Technol., 37, pp.99, 1994
15. Ken-itiro Siozawa, Nobuo Fujiwara, Hiroshi Miyatake, and Masahiro Yoneda, “Mechanism of AlCu Film Corrosion”, Jan. J. Appl. Phys., Vol 36, pp. 2496-2501, April, 1997
16. R. R Rogers and S. R. Wilson, “Localized Corrosion of Aluminum-1.5% Copper Thin Films Exposed to Photoresist Developing Solutions”, J. Vac. Sci. Technol. A9, pp.1616-1621, May/Jun 1992
17. S. Mayumi, I Murozono, H. Nanatsue and S. Ueda, “Corrosion-Induced Contact Failures in Double-Level Al-SI-Cu Metallization”, Journal of the Electrochemical Society, Vol.135, NO. 6, pp. 1861-1867, June 1990
18. S. Bothra, H. Sur, V. Liang, R. Annapragada and J. Patel, “Corrosion of Tungsten Due to Plasma Charging in a Metal Plasma Etcher”, 1998 3rd International Symposium on Plasma Process-induced Damage, American Vacuum Society, pp.227-230, June 1998
19. E. G.. Colgan, S. Greco, N. Greco and J. F. White, “Formation Mechanism of Ring Defects during Metal RIE”, pp.284-286, VMIC Conference, U.S.A., June 1994

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 30.彭淮南(1999)〈中央銀行有關我國加入WTO後對金融服務業之衝擊與因應之道〉,《中央銀行季刊》21(4):19-22。
2. 27.劉泰英(1992)〈促使台北成為國際金融中心之目的與策略〉《理論與政策》6(2):43-47。
3. 44.蕭全政(1991)〈國民主義:台灣地區威權體制的政經轉型〉,《政治科學論叢》2:71-92。
4. 33.張惠玲(2001)〈經發會後的兩岸關係評析〉,《亞太經濟合作評論》8:102-111。
5. 32.蔡英文(2001)〈兩岸關係的現況與展望〉,《立法院院聞》29(11):20-24。
6. 17.許遠東(1995)〈發展臺北成為區域金融中心的策略與展望〉,《中央銀行季刊》17(3):4-10。
7. 16.許遠東(1995)〈發展中的臺北金融中心及外商銀行的角色〉,《中央銀行季刊》17(3):11-15。
8. 12.林沁雄(1995)〈現階段外資來華投資較亞洲其他競爭國相對趨緩的結構面分析、政策含意與建議〉,《經濟情勢暨評論》1(1):96-112。
9. 11.林文琇(1996)〈從各境外金融中心之比較探索我國發展境外金融的利基〉,《中央銀行季刊》18(3):22-49。
10. 9.李碧涵(2001)〈知識經濟時代國家競爭力的社會經濟分析〉,《國家發展研究》1(1):27-61。
11. 5.李國鼎(1992)〈金融政策與金融體制之轉變〉,《自由中國之工業》78(6):1-19。
12. 25.邱正雄(1996)〈台灣與亞太金融中心〉《中國商銀月刊》15(10):23-30。
13. 20.陳伯松(1999)〈臺灣期貨市場之建制〉,《臺灣期貨市場》1(1):30-33。
14. 1.王振寰(1993)〈臺灣新政商關係的形成與政治轉型〉,《臺灣社會研究》14:123-163。
15. 19.周志龍(1997) 〈全球經濟發展與國土規劃開發體制變遷-台灣與英國為例〉,《思與言》(35)3:139-189。