跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛翠萍
研究生(外文):Tsui-Ping Hsueh
論文名稱:從囚犯困境看瀰的演化
論文名稱(外文):The Evolution of Meme on Prisoner's Dilemma
指導教授:孫春在 
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:64
中文關鍵詞:合作基因演算法囚犯困境互動式囚犯困境演化模擬
外文關鍵詞:CooperationGenetic AlgorithmMemesPrisoner's DilemmaIterated Prisoner's DilemmaEvolutionSimulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在真實社會中,我們隨時有和別人合作的需要,因為合作會為我們帶來利益,但合作常伴隨著背叛,當你遭到背叛時,不但得不到預期的利益,反而會受到意想不到的傷害,囚犯困境充分描述了這樣的情境;在一對一的情境下,囚犯困境已被充分探討過,在本研究中,將用來探討個體和群體間的合作關係。
理察道金斯(Richard Dawkins)曾在“自私的基因”這本書中提出瀰(meme)的觀念,他認為瀰是文化演化的基本單位,一如基因(gene)是生物演化的基本單位;我很認同人類文化是一個演化的產品,那麼策略的使用也是文化的一環,所以在這個研究中,我們試圖以基因演算法(genetic algorithm)來模擬策略的演化現象。
結合這兩個元素,我採用代理人式的電腦輔助模擬(Agent-Based Computer-Assisted Simulation)來進行這個研究,以一個策略代理人(Agent)來代表一個瀰,而這個策略代理人則是以囚犯困境為設計的藍本;再以基因演算法來模擬演化的過程。利用這樣的模擬來觀察在什麼情況下,會浮現出合作的行為,並探討出現合作現象的原因,並和真實社會的情形相互比較和印證。

In this world, we need to cooperate with others. Why? Because cooperation can usually create more benefit. But cooperation always also interweave with defection. When defection happens, not only there is no more benefit, but also more damage. A game theory is to describe such situation, The Prisoner’s Dilemma. Prisoner’s Dilemma had been well discussed in two players. In this study, I try to model the relationship between individual and society with Prisoner’s Dilemma.
Richard Dawkins created a word “Meme” in his book “The Selfish Gene”. He presented that meme is a unit of the culture evolution, just like gene is a unit of the creature evolution. I agree with his opinion about the culture evolution. So in this study, I try to model the evolution of strategy with genetic algorithm.
To combine the two features, I adapt Agent-Based Computer-Assisted Simulation. The strategy agent is a meme, which is projected from The Prisoner’s Dilemma. Then I model the evolution with genetic algorithm. So we can see when the cooperation will happen, and we discuss why it happens. Then think about if it happens in the real world.

目錄
中文摘要 I
英文摘要 III
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
1 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究問題 2
1.4 論文架構 2
2 文獻探討 3
2.1 瀰(meme) 3
2.1.1 什麼是瀰 3
2.1.2 瀰和基因的比較 3
2.1.3 瀰在學習上的意義 4
2.2 合作的本質 5
2.2.1 合作的成因 5
2.2.2 合作的成因的分析 7
2.3 囚犯困境(Prisoner’s Dilemma) 7
2.3.1 囚犯困境的介紹 7
2.3.2 囚犯困境的延伸 9
2.4 基因演算法(GA) 12
2.4.1 基因演算法(Genetic Algorithm ) 13
2.4.2 以基因演算法來研究囚犯困境的例子 15
2.4.3 互動式囚犯困境的演化特質 16
2.5 模擬與社會模型 17
2.5.1 電腦模擬(Computer Simulation) 17
3 研究方法與設計 18
3.1 研究方法 18
3.2 研究設計 19
3.3 資料分析與處理 21
3.3.1 演化曲線圖 21
3.3.2 策略瀰分析 22
4 結果與討論 23
4.1 基本性質分析 23
4.1.1 程式模擬結果 23
4.1.2 基本性質綜合分析 25
4.2 記憶長度和策略瀰演化的關係 25
4.2.1 模式一程式模擬結果 25
4.2.2 記憶長度綜合分析 29
4.3 分群能不能引發合作 30
4.3.1 模式二程式模擬結果 31
4.3.2 模式二綜合分析 43
4.4 懲罰機制能不能引發合作 44
4.4.1 加入懲罰機制的模擬環境 44
4.4.2 加入懲罰機制的模擬環境綜合分析 49
4.4.3 加入懲罰機制的個別情境程式模擬 49
4.4.4 加入懲罰機制的個別情境綜合分析 59
4.5 結論 60
4.5.1 研究結果綜合分析 60
4.5.2 本研究的特色和限制 60
4.5.3 未來相關研究建議 61

1. Jonathan Bendor and Piotr Swistak.The Evolution of Norms, American Journal of Sociology Volume 106 Number 6(May 2001):1493-1545, 2001.
2. Melanie Mitchell. An Introduction to Genetic Algorithms. A Bradford Book The MIT Press Cambridge, Massachusetts London, England, 1996.
3. Robert M. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.
4. Robert M. Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In Genetic Algorithms and Simulated Annealing, Morgan Kaufmann, 1987.
5. Paul J. Darwen and Xin Yao. Why More Choices Cause Less Cooperation in Iterated Prisoner’s Dilemma. 2001.
6. Lee Dugatkin. Cheating Monkey and Citizen Bees: The nature of cooperation in animals and humans. 1999.
7. Richard Dawkins. The Selfish Gene. Oxford University Press 1976.
8. Lawrence Davis. Genetic Algorithms and Simulated Annealing, Morgan Kaufmann, 1987.
9. Lomborg, Bjorn. Nucleus and Shield: The Evolution of Social Structure in the Iterated Prisoner’s Dilemma. American Sociological Review 61:278-307 1996.
10. Axelrod, Robert, and Douglas Dion. The Further Evolution of Cooperation. Science 242(December 9):1385-90 1988.
11. Robert Boyd and Jeffrey P.Lorberbaum. No pure strategy is evolutionarily stable in the repeated prison’s dilemma game. Nature, 327:58-59, 7 May 1987.
12. Bicchieri, Cristina. Rationality and Coordination. New York: Cambridge University Press. 1993.
13. Kumar Chellapilla and David B. Fogel. Evolution, neural networks, games, and intelligence. Proceedings of the IEEE, 87(9):1471-1496,September 1999.
14. Paul J. Darwen and Jordan B. Pollack. Co-evolutionary learning on noisy tasks. In Congress on Evolutionary Computation, pages 1724-1731. IEEE Press, 1999.
15. Marcus Frean. The evolution of degrees of cooperation. Journal of Theoretical Biology, 182(4):549-559. 1996.
16. Paul G. Harrald and David B. Fogel. Evolving continuous behaviors in the Iterated Prisoner’s Dilemma. Biosystems, 37: 135-145, 1996.
17. Jeffrey W. Herrmann. A genetic algorithm for minimax optimization problems. In Congress on Evolutionary Computation, pages 1099-1103. IEEE Press, 1999.
18. Whitley, L. D., and Vose, M.D., eds., Foundations of Genetic Algorithms 3. Morgan Kaufmann. 1995.
19. Roughgarden, J., Bergrnan, A., Shafir, S., and Taylor, C., Adaptive computation in ecology and evolution: A guide for future research. IN R. K. Belew and M. Mitchell, eds., Adaptive Individuals in Evolving Populations: Models and Algorithms. Addison-Wesley. 1995.
20. Koza, J. R., Genetic Programming: ON the Programming of Computers by Means of Natural Selection. MIT Oress. 1992.
21. Chalmers, D.J., The evolution of learning: An experiment in genetic connectionism. In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Model Summer School. Morgan Kaufmann. 1990.
22. Grefenstette, J. J., Deception considered harmful. In L. D. Whitley, ed., Foundations of Genetic Algorithms 2. Morgan Kaufmann. 1993.
23. Davis, L. D., Adapting operator probabilities in genetic algorithms. In J.D. Schaffer, ed., Proceedings of the third International Conference on Genetic Algorithms. Morgan Kaufmann. 1989.
24. Davis, L. D., ed., Handbook of Genetic Algorithms. Van Nostrand Reinhold. 1991.
25. Belew, R. K., Evolution, learning, and culture: Computational metaphors for adaptive algorithms. Complex Systems 4: 11-49. 1990.
26. Rawlins, G., ed., Foundations of Genetic Algorithms. Morgan Kaufmann. 1991.
27. Findler, N. V., & Malyankar, R. Emergent behaviors in societies of heterogeneous, interacting agents: Alliances and norms. In N. Gilbert and R. Conte (Eds.), Artificial societies: The computer simulation of social life (pp.212-237). London: UCL Press. 1995.
28. CONTE, R and G. N. GILBERT. ‘Introduction’ in G. N. Gilbert and R. Conte (editors) Artificial Societies: The Computer Simulation of Social Life. London: UCL. 1995.
29. MACY, M W, Social order in artificial worlds. Journal of Artificial Societies and Social Simulation. 1:1/ 1998.
30. GILBERT N. and K. G. Troitzsch. Simulation for the Social Scientist. Open University Press, Buckingham. 1999.
31. PARUNAK, H.V.D., Savit, R. and Riolo, R.L. Agent-Based Modeling vs. R., and Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based Simulation, Springer Verlag. 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top