跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾卓如
研究生(外文):choro chung
論文名稱:38GHz雷達前端電路設計
論文名稱(外文):The Front-end Circuit Design of 38GHz Radar
指導教授:鍾世忠鍾世忠引用關係吳介琮
指導教授(外文):Shyh-Jong ChungJieh-Tsorng Wu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:66
中文關鍵詞:雷達
外文關鍵詞:Radar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將介紹38GHz雷達前端電路設計,為一車裝系統的前端架構。其主要目的為測速與測距-幫助駕駛者在雨天或有霧的天氣,因為視覺的不良,而發生危險。本論文包含了整合接收機與發射機的單級設計方法、製造和量測。其中發射端與接收端均使用Duroid-5880 板材製作,操作頻段38GHz。
第二章介紹前視雷達的基本理論與操作原理。第三章包含了各單級元件的設計理論,模擬,與實作。其中雷達需要一個線性度良好,穩定,相位雜訊低的source,我們應用了微波鑑鎖頻器所構成的鎖頻迴路來達成此一目的。此transceiver使用模組化的架構,利用三倍頻器將頻段昇頻至毫米波段,如此易除錯且降低成本。其中單級包括有VCO,Mixer,Tripler,BPF,Amplifier,MMIC,Coupler,等等..,均使用微帶線來作設計。所設計的38GHz Rate-Race Mixer之C/L=-7~-8dB(@38.1~38.4GHz),對接收機而言,雜訊指數亦貢獻7~8dB;Anti-parallel Diode Tripler 之C/L=-17dB,其值雖大,但對於Millimeter Wave而言,可降低空腔的效應,亦可避免振盪的發生。
第四章為Transceiver的量測結果與未來的研究方向,可朝向均以MMIC作設計,如此可使尺寸縮小,降低成本。且如何運用DSP(數位訊號處理器)來顯示與計算速度與距離,將是下一階段的研究重點。

This thesis illustrates the necessity and design process of the front-end circuit design of 38GHz radar for use in vehicular applications. A qualitative discussion of the need for and applications of a simple low cost transceiver system is presented first. A closer look at a system componentsrequirement are presented well.
The second portion of the thesis focuses on the understanding electromagnetic theories that radar is built upon. The radar range equation, frequency linearity, etc…are all discussed with relation to the design process. Parameters in the choice of frequency modulated continuous wave radar are given to support the choice in radar type.
The experimental design procedure for the radar system is presented in detail. Every component of the radar system is examined with respected to its electrical and functional aspects. Every components experimental test results are given to illustrate the success of the design procedure and to support choices of specific hardware types.

CHINESE ABSTRACT……………………………………………………….……..Ⅰ
ABSTRACT………………………………………………………………………….Ⅱ
ACKNOWLEDGMENTS……………………………………………………………Ⅲ
TABLES OF CONTENTS…………………………………………………………...Ⅳ
LIST OF FIGURES………………………………………………………………..…Ⅵ
Chapter 1 Introduction….……………………………………………………………..1
1.1 Motivation…………………………………………………………....………....1
1.2 Vehicular applications………………………………………………...………...3
1.3 Overview………………………………………………………………..………4
Chapter 2 Electromagnetic Fundamentals of Radar.…………………………….…….5
2.1 FMCW radar principle………………………………………………..……….5
2.2 Frequency-modulated-continuous-wave………………………….…..………7
2.3 FMCW linearity background.………………………………………….…….10
Chapter 3 Theory and Design……………………………………………………..….12
3.1 Introduction……………………………………...………...………………...12
3.2 System description ………………………………………….………………13
3.3 Frequency locking a microwave source……………………...……………...17
3.3.1 VCO linearisation by frequency feedback…………………..……………17
3.3.2 The frequency locked loop……………………………………..…………20
3.3.3 Measurements…………………………………………………...………...23
3.4 MicroWave transmission line frequency discriminator(Frequency Detector)………………………………………………………………….….25
3.4.1 Measurements versus simulations………………………………..……….....28
3.5 Harmonic mixing with an anti-parallel diode pair……………………..…....31
3.6 38GHz Rate Race mixer……………………………………….……….....…35
3.6.1 Measurements versus simulations…………………………………………...39
3.7 38GHz Anti-parallel multiplier (Tripler)………………………………...…..43
3.7.1 Measurements versus simulations…………………………………………...44
3.8 38GHz Branch line coupler……………………………………………...…..49
3.8.1 Method of coupler design………………………………………..…....…..50
3.8.2 Measurements versus simulations………...………………………..……..51
3.9 38GHz Coupled line band-pass filter………………………………………..54
3.9.1 Measurements versus simulations…………………………………….…..…55
3.10 The MMIC………………………………………………………………….59
3.10.1 Measurements versus the data sheet performance…………………………60
Chapter 4 Conclusion and Future study…………………….…………….………….62
4.1 Final test……………………………………………………………...…………..62
4.2 Future study……………………………………………………………...……….64

[1] Leonhard Reindl, “Design, Fabrication, and Application of Precise SAW Delay Lines Used in an FMCW Radar System,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, NO. 4, April 2001.
[2] J. Woll, “VORAD collision warning radar,” in IEEE int. Radar Conf., Alexandria, VA, May 1995, pp. 369-376.
[3] K. W. Chang et al., “Forward-looking automotive radar using a W-band chip transceiver,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1695-1668, July 1995.
[4] Celsius Tech “High Performance Automotive Radar for Automotive ACC,” IEEE International Radar Conference, 1995.
[5] Mark E. Russell, “Millimeter Wave Radar Sensor for Automotive Intelligent Cruise Control (ICC),” 1997 IEEE-MTT-S International Microwave Symposium Digest, 1997.
[6] D. A. Williams, “A highly linearised mm-wave voltage controlled oscillator for FMCW RADAR application” in Proc. MIOP 88 (Weisbaden, West Germany), 1988.
[7] B.Glance and W.W. Snell Jnr. ”A Stabilized Microstrip Oscillator Discriminator” IEEE MTT-26 No. 10 pp.648-650 1976.
[8] P. Lowbridge, “Low cost millimeter wave radar systems for intelligent vehicle cruise control applications,” Microwave J.,vol. 38, no. 10, pp. 20-33, Oct. 1995.
[9] H. D. Griffiths, “The effect of phase and amplitude errors in FM radar,” in IEE High Time-Bandwidth Product Waveforms in Radar Sonar Colloq., London, U.K., 1991, pp. 9/1-9/5.
[10] P.Heide, “Commercial microwave sensor technology-An emerging business, ”Microwave J., vol. 42, no. 5, pp. 348-352, May 1999.
[11] H. Odagawa and K. Yamanouchi, “10 GHz range extremely low-loss surface acoustic wave filter, ”Electron. Lett, vol. 34, no. 9, pp.865-866, Apr. 1998.
[12] Masahiro Muraguchi, “Optimum Design of 3-dB Branch-Line Couplers Using Microstrip Lines,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-31, NO. 8, August 1983.
[13] Keith H. Norsworthy, The Boeing Company, FM/CW Sweep Linearization and Method Therefor, US patent 4,539,565, filed 16 August 1982, award 3 September 1985.
[14] Thomas W. Glynn, Millimeter-Wave Radar Seekers: An Historical Perspective, MSN, December 1988, pp. 63-66.
[15] Krohne Messtechnik, LOW POWER FMCW RADAR SYSTEM FOR LEVEL GAGING, 2000 IEEE MTT-S Digest.
[16] J.Mondal, K.Wong, 77 GHz MMIC T/R Module for Diplex Radar Application in Collision Avoidance Radar (CAR), 1998 IEEE.
[17] M. Vossiek, T. V. Kerssenbrock and P. Heide, Novel Nonlinear FMCW Radar for Precise Distance and Velocity Measurement, 1998 IEEE MTT-S Disest.
[18] Simens AG, Corporate Technology, SWEEP LINEARIZATION OF A MOCROWAVE FMCW DOPPLER SENSOR BY AN ULTRASONIC REFERENCE, 1997 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSUM.
[19] Yang Xiaobo, A Research on Millimeter-Wave LFMCW Radar for Airfield Object Imaging, 2000 IEEE.
[20] P. M. Relph and H.D. Griffiths, AN ELECTRONICALLY SCANNING ANTENNA FOR AUTOMOTIVE RADAR SYSTEMS, 1998 The Institution of Electrical Engineers. Printed and published by the IEE, savoy place, London WC2R 0BL, UK.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文