跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱裕欽
研究生(外文):Yuh-Chin Chiou
論文名稱:建立虛擬實境飛行動態模擬系統之現代戰機空氣動力模型
論文名稱(外文):Aerodynamics motion modeling for the VR-based Modern Air Fighter Simulation System
指導教授:莊仁輝林進燈林進燈引用關係
指導教授(外文):Jen-Hui ChuangChin-Teng Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:虛擬實境飛行模擬空氣動力模型
外文關鍵詞:VRflight simulationaerodynamics modeling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現代的航空器系統對飛行員而言是既複雜又具挑戰的工作環境,而飛行訓練是危險性高、花費極為昂貴、人員培植不易且承擔不起重大損失的尖端科技類的訓練。因此,藉由地面的模擬飛行,達到實際飛行訓練的要求,不但節省訓練飛行員的花費亦可保障人員安全及航空器的損害。
目前虛擬實境在飛航器的模擬訓練上已經扮演了很重要的角色,而飛行模擬器性能的好壞,則取決於其是否能充分反應真實飛機的動態特性。本文研究的目的在於虛擬實境的系統上建立以國軍二代戰機為主的空氣動力數學模型,利用其風洞測試數據,進行動態模式數據處理分析並進而建立以常態多項式表示的氣動力空氣動力係數模型。藉由參數估測運算與空氣動力係數模型修正,以拉近飛行模擬器與真實飛機的動態響應間的差距,提高飛行模擬器的真實程度。
由於在一般非線性的模擬存在系統辨識中模式建立與參數估測問題,包括以一般數值解法的不易及因初始猜測值不當而可能導致之積分發散及收歛不良的問題,運用基因程式(Genetic Programming)【1】【2】的概念,一種啟發式自組織建立模型方法【3】(Self-organizing modeling)藉由用輸入變量及演化的多項式來近似地表示非線性系統的輸入輸出關係,配合適應函數(fitness function)選擇最佳結果作自我模式修正, 可快速建立空氣動力係數常態多項式數學模型。由於實際飛行資料取得不易,本文將藉由風洞測試數據來驗證本法在橫向與縱向飛行動態上其誤差在非線性空氣動力模擬應用上能接受的範圍之內,進而完成現代戰
機空氣動力模型。
本文最後將現代戰機空氣動力模型結合虛擬實境場景並利用TCP/IP 網路連線功能來與六軸運動平台控制器作連結展現戰機飛行姿態和力的表現,未來並整合力操控搖桿成為一完整之現代戰機動態模擬訓練系統。
Modern aircraft is quite complicated and poses challenge to pilots. Since flight training is highly risky and extremely expensive, flight training by simulation not only saves costs but also avoids the damage to personnel and aircraft.
The aim of this thesis is to develop a visual simulation pilot training simulator with real-time dynamic model for air fighter. The criteria for judging the performance of flight simulation focuses on the fidelity of the simulation to the actual aircraft. To reduce the difference between a flight simulator and an air fighter that a technique was developed for global modeling of nonlinear aerodynamic coefficients by analyzing the subsonic wind tunnel data for the air fighter. The ordinary polynomial of the modeling functions allowed straightforward determination of an adequate model structure and the associated parameter values by cost function and parameter estimate.
Normally nonlinear systems exhibit two major problems: system identification and divergence due to numerical methods and bad initial parametric guess. A selforganizing method in modeling based on genetic programming is used for wind tunnel data analysis and to construct polynomial functions. Minimum predicted squared error criterion is used to determine which polynomial functions should be retained in the model. Each retained polynomial function is decomposed into an expansion of ordinary polynomials in independent variables so that the final model can be interpreted as selectively retained terms from a multivariable power series expansion. The resultant polynomial model demonstrates good predictive capability that provides insight for the character of the nonlinear aerodynamics.
In system integration that to construct the complete air fighter pilot training system, we bring the VR scene、air fighter aerodynamics model and TCP/IP as the interface between the VR scene and Stewart platform to perform the 6-DOF posture of platform by manipulating force-feedback joystick to feel fighter dynamics.
中文摘要........…………………………………………………… .. i
英文摘要.......……………………………………………………… ..ii
誌謝……………………………………………………………………… .iii
目錄…………………………………………………………………………..iv
表目錄………………………………………………………………………..vi
圖目錄……………………………………………………………………….vii
符號說明……………………………………………………………………. ix
第一章 緒論……………………………………………………………….…1
1.1 前言……………………………………………………………….1
1.2 研究背景與文獻回顧………………………………………….…2
1.2.1 虛擬實境場景…………………………………………………..2
1.2.2 非線性空氣動力係數識別方法回顧………………………….4
1.3 實驗設備系統介紹……………………………………………….5
1.4 論文架構………………………………………………………….5
第二章 Flight Gear及虛擬實境場景發展介紹………………………..7
2.1 OpenGL 及 Linux 簡介…………………………………………7
2.1.1 OpenGL 簡介……………………………………………………….8
2.1.2 Linux 簡介……………………………………………………….10
2.2 Flight Gear 及 虛擬實境場景開發簡介…………..………11
2.3 史都華平台簡介……………………………………….…...13
2.4 發展流程………………………………………………………17
第三章 F-16戰機飛行動態系統建立………………………………18
3.1 座標系統定義………………………………………………19
3.1.1 機體座標………………………………………………………19
3.1.2 地球地理座標…………………………………………………20
3.1.3 慣性座標系……………………………………………………21
3.2 座標轉換……………………………………………………22
3.3 飛行動態系統簡介…………………………………………23
3.3.1 機體操縱面……………………………………………………23
3.3.2 大氣環境模型…………………………………………………24
3.3.3 引擎推力模型…………………………………………………24
3.3.4 F-16戰機氣動力係數.……………………………………….25
3.3.5 動態飛行運動方程……………………………………………26
第四章 非線性空氣動力系統識別與驗證…………………………31
4.1 基因程式……………………………………………………32
4.2 啟發式自組織建立模式……………………………………34
4.3 適應函數……………………………………………………38
4.4 F-16戰機非線性空氣動力系統識別…………..........39
4.4.1 風洞測試數據………………………………………………..40
4.4.2 啟發式自組織建立模式應用………………………………40
4.5 F-16空氣動力係數驗證………………………………...43
4.6 F-16戰機飛行動態模擬結果…………………………...47
第五章 系統整合…………………………………………………51
5.1 虛擬實境動態模擬系統架構……………………………52
5.2 分散式平行處理系統之連線……………………………54
5.3 六軸運動平台通訊介面模組……………………………57
5.4 序列搖桿通訊介面………………………………………58
5.5 分散式飛機操控模擬訓練系統之整合…………………59
第六章 結論與展望…………………………………………………61
參考文獻……………………………………………………………..62
附 錄……………………………………………………………..66
【 1 】 C.T. Lin and C.S. George Lee, “Neural Fuzzy System,” Prentice Hall, Upper Saddle River, New Jersey, USA, 1996.
【 2 】 J. R. Koza, “Genetic Programming : On the Programming of Computers by Means of Natural Selection,” MIT Press, U.S.A, 1992.
【 3 】 A. R. Barron, “Predicted Squared Error : A Criterion for Automatic Model Selection,” Self-Organizing Methods in Modeling, S.J. Farlow, Ed., Marcel Dekker, Inc., New York, 1984, pp. 87-104.
【 4 】 http://www.flightgear.org/
【 5 】 M. A. Gigante, “Virtual Reality Definitions, History and Applications. In Earnshaw,” Virtual Re-ality Systems, R. A., et al. Ed., Academic Press., London, 1993, pp. 3-14.
【 6 】 C. Pearce, “The Interactive Book,” Mac-millan Technical, Indiana, 1997.
【 7 】 K. Pimentel and K. Teixeira, “Virtual Reality Through the New Looking Glass,” Mc-Graw-Hill, New York, 1993.
【 8 】 J. Cremer, J. Kearney, and Y. Papelis, “Driving Simulation: Challenges for VR Technology,” IEEE Computer Graphics and Applications, Vol.16, Issue 5, Sept. 1996, pp.16-20.
【 9 】 J. Kuhl, D. Evans, Y. Papelis, R. Romano, and G. Watson, “The Iowa Driving Simulator: an Immersive Research Environment,” IEEE Computer, Vol. 28, Issue 7, July 1995, pp. 35-41.
【 10 】 J. H. Kim, W. S. Lee, H. K. Park, and J. H. Cho, “A Design and Characteristic Analysis of the Motion Base for Vehicle Driving Simulator,” Proceedings of IEEE Robot and Human Communication, 1997, pp. 290-294.
【 11 】 R.R. Mourant, N. Qiu, and S.A. Chiu, “A Distributed Virtual Driving Simulator,” IEEE Virtual Reality Annual International Symposium, pp. 208, 1997.
【 12 】 M.J. Zyda, R.B. McGhee, R.S. Ross, D.B. Smith, and D.G. Streyle, “Flight Simulators for Under $100,000,” IEEE Computer Graphics and Applications, Vol. 8, Issue 1, Jan. 1988, pp. 19 —27.
【 13 】 P.A. Platt, D.A. Dahn, and P. Amburn, “Low-cost Approaches to Virtual Flight Simulation,” Proceedings of the IEEE Aerospace and Electronics Conference, Vol. 2, 1991, pp. 940-946.
【 14 】 W. D. et al., “A Virtual Cockpit for a Distributed Interactive Simulation,” Proceedings of IEEE Computer Graphics and Applications, 1994, pp. 49-54.
【 15 】 P.M. Silson and M.G. Kellett., “Parallel Realization of a Six Degree of Freedom Model of an Aircraft,” IEEE International Conference on Control, Vol. 2, 1991, pp. 724 -728.
【 16 】 G. Bell, A. Parisi, and M. Pesce, “The Virtual Reality Modeling Language: Version 1.0 Specification, ” May 26, 1995
【 17 】 許政文,建構於個人電腦上飛行模擬器儀表軟體之研究,國立成功大學電機工程研究所碩士論文,1996。
【 18 】 林琮瑜,操縱桿之設計與其在飛行模擬器之應用,國立成功大學電機工程研究所碩士論文,1996。
【 19 】 D. Sandin, et al., “The ImmersaDesk and Infinity Wall Projection-Based Virtual Reality Displays,” Computer Graphics, Vol. 31, No. 2, pp. 46-49.
【 20 】 E. Richard Sayre, et al., “3D Galatea: Entry of three-dimensional moving points from multiple perspective views,” ACM Computer Graphics, July 1982.
【 21 】 張佳祺,三自由度模擬機運動模擬與虛擬實境之整合研究,國立台灣大學造船工程學系碩士論文,1997。
【 22 】 林志偉,低價旋翼機飛行模擬器之研究與發展,淡江大學航空太空工程學系碩士論文,2000。
【 23 】 陳柏誠,前庭系統與飛行模擬器驅動程式之研究,淡江大學航空太空工程學系碩士論文,2000。
【 24 】 B.K. Walker and J. High-Garcia-Velo, “Performance Aircraft Using Extended KalmanFiltering ,” Journal of Guidance, Control and Dynamics, Vol. 20, No. 6, pp. 1257-1259, 1997.
【 25 】 V. Klein, J.G. Batterson, and P.C. Murphy, “Determination of Airplane Model Structure from Flight Data by Using Modified Stepwise Regression,” NASA TP-1916, 1981.
【 26 】 OpenGL Architecture Review Board, “OpenGL Programming Guide,” Release 1, Addison-Wesley Publishing Company, 1993.
【 27 】 D. Stewart, “A Platform with Six Degrees of Freedom, ” Proceedings of the Institution of Mechanical Engineers, Vol. 180, Part 1, No. 5, 1965-1966, pp. 371-386.
【 28 】 D. C. Yang and T. W. Lee, “Feasibility Study of a Platform Type of Robotic Manipulators from a Kinematics Viewpoint,” Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 191-198, 1984.
【 29 】 E. F. Fichter, “A Stewart Platform-Based Manipulator: General Theory and Practical Construction,” Journal of Robotics Research, pp. 157-182, 1986.
【 30 】 W. Q. D. Do and D. C. H. Yang, “Inverse Dynamics Analysis and Simulation of a Platform Type of Robot,” Journal of Robotics Systems, Vol. 5, pp. 209-229, 1988.
【 31 】 P. Nanua and K. J. Waldorm, “Direct Kinematics Solution of a Stewart Platform,” IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 431-437, 1989.
【 32 】 S.M. Song and C.D. Zhang, “Forward Kinematics of a Class of Parallel Stewart Platforms with Closed-Form Solutions,” Proc. Of the 1991 IEEE International Conference on Robotics and Automation, Vol. 2,pp. 2676-2681, 1991.
【 33 】 C. C. Nguyen, S. S. Antrazi, Z.L. Zhou and C. E. Campbell, “Experimental Study of Motion Control and Trajectory Planning for a Stewart Platform Robot Manipulator,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 1873-1878, April, 1991.
【 34 】 Z. Geng and L. Haynes, “Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform,” Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation, pp. 2650-2655, April, 1991.
【 35 】 Z. Geng, “On the Dynamic Model and Kinematics Analysis of a Class of Stewart Platform,” Journal of Robotics Systems and Automation System, Vol. 9, 1992.
【 36 】 H. Pang, “Kinematics and Dynamics of a Parallel Manipulator with Woven Joints,” Vibration and Dynamics of Robotics and Multibody structures, ASME, pp. 49-56, 1993.
【 37 】 P.A. Drexel and A.J. Taylor, “Six Degree-of-freedom Hydraulic, One Person Motion Simulator,” Proceedings IEEE International Conference on Robotics and Automation, pt. 3, pp. 2437-2443, 1994.
【 38 】 B.L. Stevens and F.L. Lewis, “Aircraft Control and Simulation,” John Wiley & Sons, Inc., New York, 1992.
【 39 】 R. W. Brumbaugh, “An Aircraft Model for the AIAA control challenge,” AIAA paper 91-2631, August, 1991.
【 40 】 劉制申編著,空氣動力學,國立編譯館出版,台北,1971。
【 41 】 夏天長著,熊光楞、李芳芸譯,系統辨識,清華大學出版社,北京,1983。
【 42 】 張鴻祥,虛擬實境之六軸動感平台控制與系統整合,交通大學電機與控制工程研究所碩士論文,1998。
【 43 】 練紹安,分散式即時動態視覺模擬操控訓練系統之研發,交通大學電機與控制工程研究所碩士論文,2000。
【 44 】 張鴻祥,虛擬實境之六軸動感平台控制與系統整合,交通大學電機與控制工程研究所碩士論文,1998。
練紹安,分散式即時動態視覺模擬操控訓練系統之研發,交通大學電機與控制工程研究所碩士論文,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top