跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王振隆
研究生(外文):Chan-Lung Wang
論文名稱:非遮蔽雙絞線電氣特性研究
論文名稱(外文):A Study of Electrical Characteristics of Unshielded Twisted Pair Cabling
指導教授:黃宇中
指導教授(外文):Yu-Chung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電資學院學程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:非遮蔽雙絞線Attenuation loss近端串音遠端串音同位遠端串音量干擾非遮蔽雙絞線
外文關鍵詞:Unshielded Twisted PairAttenuation lossNEXTFEXTELFEXTCrosstalkUTP
相關次數:
  • 被引用被引用:1
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來非遮蔽雙絞線廣泛使用在高頻資料傳輸上,如網路系統及電話系統上之xDSL、ISDN。了解非遮蔽雙絞線之通道效應對於設計或維護、架設整個線導通訊系統是非常重耍的。通常通道效應可以使用量測之方法量出,但却不易有效分析其影響通道效應之主要因素。非遮蔽雙絞線之數學分析模型之產生,可使在了解通道效應之因果關係方面,提供了比完全經由量測所得方法更佳之了解。首先在文中開始,先說明差模及並模信號及信號調整耦合器在絞線傳輸系統中之功用,及信號調整耦合器之作用結果,說明那些絞線之電氣分析是重要的。導線之衰減及干擾二項絞線電氣特性是主要影響線導通訊品質之重要因素,文中先推導出衰減公式並與規範值及量測結果相比較。接著我們進行分析絞線干擾,Chain matrix之方法為本文用來分析非遮蔽雙絞線之工具。使用Chain matrix之方法可以模擬出單一直線對雙絞線所產生之共模對差模之干擾及雙絞線間共模對差模對差模之干擾之情形。本文之模擬將著重在差模干擾部分,對產生差模干擾大小之影響因素如導線長短、絞線率、導線高度…等作分析。結果為干擾之大小大致上是與導線長短成正比,而與絞線率、導線高度成反比,並且在高低頻時有不同之干擾反應。而絞線間之干擾幾乎是與絞線高度無關的.
另外我們說明了LCL (Longitudinal Conversion Loss) 及LTCL (Longitudinal Transfer Conversion Loss)兩項電氣特性之意義,及ELFEXT (Equal Level Far End Crosstalk)與FEXT (Far End Crosstalk)二者兩項電氣特性之間的關係,最後還提到絞線量測方法,一種為常用之使用balun方法,但需重複量測,效率不佳。另一種方法為modal decomposition方法,在這一種方法中我們導出比其他文獻更詳盡之說明,但我們不作實際之量測。本論文將對工程師提供一個更明白了解非遮掩雙絞線在電子裝置應用上之貢獻。

Recently, a unshielded twisted pair cable (UTP) has been widely used in high frequency data transmission such as LAN systems and telephone lines using xDSL or ISDN.The understanding of channel effects of UTP cable is very important for the development, maintenance and the cabling of wire communication system. Generally, The channel effects could be obtained by measuring of UTP, but which provide less information for understanding the main factors that affect the channel effect. The development of numerical analysis model of UTP provide more better information than measurement method for understanding the reasons that affect channel effect. At the beginning of this paper, we introduce the role of the common mode, differential mode signal and signal transformer in wired communication system. Because of the signal transformer we explain which electrical characteristics of UTP are important. It is obvious that attenuation and crosstalk are the most important characteristics, which affect the quality of wired communication. Firstly, the equation of attenuation is derived, and is compared with measured results and the limits of specification. The crosstalk characteristics of UTP are the following main topic. By using chain matrix method, we develop the analysis of generated differential crosstalk between single wire and twisted pair and between two twisted pair cables. We also analysis the factors which affect the crosstalk, such as cable length, twisted rate, cable height Etc. The simulations show that the crosstalk is increased when cable length increase, and is decreased when twisted rate and cable height increase. The most interested result is the crosstalk between two twisted cables is almost independent with cable height.
The others, we explain the LCL (Longitudinal Conversion Loss) and LCTL (Longitudinal Conversion Transfer Loss) and the relation between ELFEXT (Equal Level Far End Crosstalk) and FEXT (Far End Crosstalk). The methods of cable measurement are also introduced in this paper. The most wide used method is by using balun method, which is required repeated measuring and lack of efficiency. The other method, modal decomposition method provides more quickly measuring. We explain the method more theoretical clearly than other papers, but we don’t make measures. The contents of this paper could provide a contribution to engineers with a clearer understanding about unshielded twisted pair application in electronic equipments.

中文摘要………………………………………………………………… i
英文摘要………………………………………………………………… ii
誌謝……………………………………………………………………… iii
目錄……………………………………………………………………… iv
表目錄…………………………………………………………………… vi
圖目錄…………………………………………………………………… viii
符號說明………………………………………………………………… ix
一、緒論………………………………………………………………… 1
1.1 簡介………………………………………………………………… 1
1.2 如何改進傳輸頻寛………………………………………………… 1
1.3 改進傳輸頻寛之實例……………………………………………… 2
1.4 絞線研究之重要性………………………………………………… 4
二、研究內容與方法…………………………………………………… 5
三、理論………………………………………………………………… 7
3.1 共模、差模信號與信號調整耦合器……………………………… 7
3.2 UTP 之Attenuation……………………………………………… 8
3.3 雙絞線之抗干擾能力……………………………………………… 10
3.3.1 直線對雙絞線之干擾模型……………………………………… 10
3.3.2 等效電路………………………………………………………… 12
3.3.3 傳輸線之Chain matrix………………………………………… 13
3.3.4 傳輸線二端之Chain matrix…………………………………… 14
3.3.5 計算干擾所產生之電壓………………………………………… 15
3.4 雙絞線之間之干擾………………………………………………… 16
3.4.1 雙絞線之間之干擾模型………………………………………… 16
3.4.2 等效電路………………………………………………………… 17
3.4.3 傳輸線之Chain matrix………………………………………… 18
3.4.4 傳輸線二端之Chain matrix…………………………………… 18
3.4.5 計算雙絞線之間之干擾………………………………………… 18
3.5 LCL 及LTCL 電氣特性…………………………………………… 19
3.6 ELFEXT 與FEXT 關係之說明……………………………………… 19
3.7 絞線之量測方法及理論…………………………………………… 20
3.7.1 使用balun 量測cable………………………………………… 20
3.7.1.1 特性阻抗之量測……………………………………………… 20
3.7.1.2 Attenuation loss 之量測………………………………… 21
3.7.1.3 NEXT、FEXT 之量測及Return loss 之量測…………………21
3.7.1.4 LCL 之量測…………………………………………………… 22
3.7.1.5 使用balun 量測方法之校準………………………………… 22
3.7.2 Modal decomposition 之量測方法…………………………… 23
3.7.2.1 EXAMPLE1-單一twisted pair 時…………………………… 26
3.7.2.2 EXAMPLE2-UTP(四個雙絞線時)……………………………… 28
3.7.3 使用balun量測及Modal decomposition量測方法之比較….. 29
四、模擬與實驗之部份………………………………………………… 30
4.1 直線對雙絞線之干擾模擬………………………………………… 30
4.1.1 頻率與NEXT 干擾之關係……………………………………… 30
4.1.2 絞線圈數與NEXT 干擾之關係……………………………………30
4.1.3 干擾與絞線相對於水平面起始角度之關係…………………… 33
4.1.4 干擾與產生干擾直線位置之關係……………………………… 33
4.1.5 干擾與終端阻抗關係…………………………………………… 33
4.1.6 干擾與終端電容關係…………………………………………… 34
4.1.7 更長雙絞線之模擬……………………………………………… 34
4.1.8 LAN 用UTP 之受干擾情況……………………………………… 37
4.2 雙絞線間之干擾模擬……………………………………………… 40
4.2.1 絞線對絞線之近端干擾與頻率之關係………………………… 40
4.2.2 絞線對絞線之近端干擾與二者之間距離之關係……………… 41
4.2.3 絞線對絞線之近端干擾與絞線圈數之關係…………………… 41
4.2.4 絞線對絞線之近端干擾與絞線長度之關係…………………… 41
4.2.5 絞線對絞線之近端干擾與絞線高度之關係…………………… 41
4.2.6 UTP 之NEXT 量測結果與模擬之結果比較…………………… 42
4.3 UTP cable 衰減之量測…………………………………………… 47
4.4 UTP cable 其他電氣特性規格之量測…………………………… 49
五、結論………………………………………………………………… 54
參考文獻………………………………………………………………… 55
附錄……………………………………………………………………… 56
自傳……………………………………………………………………… 62

[1]ANSI/TIA/EIA-568-B.1 -Commercial Building Telecommunications Cabling Standard - Part 1: General Requirements,2001
[2]ANSI/TIA/EIA-568-B.2 -Commercial Building Telecommunications Cabling Standard - Part 2: Balanced Twisted-Pair Cabling Components,2001
[3]Simon Ramo, John R. Whinnery, Theodore Van Duzer, “Fields and Waves in Communication Electronics”,wiey,new york 1984 2nd ed., chapter5
[4]Al-Asadi, M.M.,et al.,”Analysis and modelling of structured wiring communication channels” Science, Measurement and Technology, IEE Proceedings- , Volume: 148 Issue: 3 , May 2001 Page 129—136.
[5] R.Croze, et al. (K.Hayashi translated), ”Transmission Telephonique,” p.31,Gakken-sya,1969.(In Japanese)
[6] C.R.Paul, et al., “Prediction of Crosstalk Involving Twisted Pairs of Wires . Part I: A Transmission-Line Model for Twisted-Wire Pairs”, IEEE Trans. Electromagn. Compat.,vol.EMC-21,no.2,pp.92-105,May 1979.
[7] N.Yamamoto, et al.,”Electromagnetic Noise Induced on Unshielded Twisted Pair Cable”,IEICE Trans. Vol.J84-B No.3 pp.551-561 March 2001(In Japanese)
[8] N.Yamamoto, et al., “Prediction of Electromagnetic Noise Induction on Unshielded Twisted Pair Cable for High Speed LAN”, 2000 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION, 4D2,Aug.25, 2000,Fukuoka Japan
[9] N.Yamamoto, et al., “Electromagnetic Noise Characteristics between Two Unshielded Twisted-Wire Pair for the Number of Twist.”, EMCJ2000-10.pp.1-6,May 2000(In Japanese)
[10] ITU-T Recommendation G.117,1996
[11] Yoshifumi Shimoshio, et al. ”LCTL Characteristics of Twisted Pair Cable Represented by Varying Lumped Element”, Asia-Pacific Microwave Conference Proceedings -APMC'98- Vol.3, pp.1207-1211, Yokohama, Japan,1998
[12]Seiji Hamada, et al. “Influence of Balance-Unbalance Conversion Factor on Radiated Emission Characteristics of Balanced Cables”, IEEE EMC International Symposium, Vol.1, No.D2-A2-01, pp.31-36,Montreal, Canada
[13] Yanagawa, K. et al. ” A measurement of balanced transmission lines using S-parameters”, IMTC/94. Page(s): 866 -869 vol.2, 1994 IEEE , 1994
[14] 林候隆,” 非遮蔽雙絞線電纜之設計與量測”,國立成功大學,碩士論文,民國88年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top