跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林木榮
研究生(外文):Mu-Jung Lin
論文名稱:火災後果模擬運用在緊急應變系統設計
論文名稱(外文):Study for Fire Modeling Application in Emergency Response System Design
指導教授:陳俊勳陳俊勳引用關係
指導教授(外文):Chiun-Hsun Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:產業安全與防災學程碩士班
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:137
中文關鍵詞:防火消防緊急應變後果分析風險管理
外文關鍵詞:Fire ProtectionFire ProtectionEmergency ResponseConsequence AnalysisRisk Management
相關次數:
  • 被引用被引用:9
  • 點閱點閱:495
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要探討CD-R工廠在火災緊急應變系統設計中有關人員生命安全防護之有效性分析,此研究從三個方向著手。第一,利用火災風險分析概念,分別尋找高火災風險製程單元與區域;第二,利用NIST發展之場模式FDS來模擬高火災風險製程單元與區域所造成之溫度、煙濃度、殘氧濃度與二氧化碳之危害特性;第三,利用IES所發展人員避難逃生軟體SIMULEX來分析人員避難模式與時間。最後歸納第二與第三之結果提出改善火災發生可能造成之重大人員傷亡之建議修正方向。第一部份的研究顯示,高火災風險製程單元主要集中於使用易燃性化學品之機台,而高火災風險區域則與人員數量、高價機台與作業頻度有關。第二部份的分析發現,設有排煙與灑水之區域,其火災危害相對其他較低;單獨設置排煙系統對於煙濃度控制最佳,但對溫度的影響有限;若增設撒水系統對於火場溫度具有控制(Fire Control)的效能,但是抑制(Suppression)效能並未顯現;另外亦發現火場主要危害為溫度效應。第三部份的分析顯示,對於大空間低人員密度,其人員避難快速,只有在靠近集結點處方有擁擠堵塞的現象產生。綜合第二部份與第三部份之結果,當不可忍受情況危害到人員生命安全之際,其對策可從三大方向著手:第一,預防策略,主要是降低化學品存量。第二,防護策略,增設撒水系統、採用及早期偵測系統。第三,應變策略,加強應變演練、縮短反應時間。此研究最大突破在於改變過去以定性模式之緊急應變架構,取而代之以預測災害之定量模式來作為緊急應變架構為主,對於災害之掌握更為明確,且改變以應變人員為主之搶救模式,轉以主被動式防災系統為主之搶救模式,以減少人員的損失。
This paper addresses the analysis of life safety’s protection in renovating emergency response system under fires at the CD-R manufacturing facility. The attentions of this research are focused on three analyses:
First, applying the concepts of fire risk analysis techniques to identify the potential high risk at the processing units and areas is achieved. Second, applying the Computational Fluid Dynamics’ zone model─ Fire Dynamics Simulator (FDS), developed by National Institute of Standards and Technology (NIST), to simulate the characteristics of hazards including temperature, smoke volume rate, residual oxygen concentration and carbon dioxide at the processing units and areas with highly potential risks is fulfilled.. Third, utilizing the evacuation model─ Simulex, developed by Integrated Environmental Solutions (IES), to analyze occupant evacuation model and time is accomplished.
According to the results of second and third analyses, the suggestions of integrated solutions to reduce the probability of catastrophic incidents can be summarized by plotting timeline and temperature. There has been widely used of flammable chemicals at the processing units which present the greatest risk of fires. There are connections existing between the occupants, the frequency of activities and high-value equipment at the areas of presenting likelihood of high risks.
The areas with ventilation systems and automatic sprinkler systems are having relatively low risks of fires compared to other areas. Installation of ventilation systems has the best mean of control of smoke volume rate, but its effect of temperature is quiet limited. The performance of adding automatic sprinkler systems will enhance the mechanism of fire control, but its effect on suppression is not clear. The major hazard of fires is identified as thermal effect. The third part of analysis indicates that the lower occupant load in vast space, the better performance of evacuation except some minor crowded movement at the endpoint.
Summarizing the results of the second and third analyses under hazardous conditions, the life safety of occupants may be endangered. The strategies to control such scenarios include: prevention, protection and response. Reduction of the chemicals stored in the areas prevents the possibility of happening. Installation of automatic sprinkler system and early-warning detection system provides the mean of protection. Improving the practice and training of emergency program leads to shortage of response time.
This research sets the benchmark of the framework of emergency response by replacing qualitative mode with quantitative mode. As a result, the accountability of the incident will be improved. It not only changes the philosophy of emergency response, but also improves the overall safety of the emergency response personnel with active and passive approaches. Active approaches include automatic sprinkler system, detection system and so on. Passive approaches include dike, compartmentation, fire resistance materials and so on.
中文摘要 I
英文摘要 III
誌謝 V
目錄 ⅤI
表目錄 IX
圖目錄 X
符號表 XVIII
第一章 續論 1
1.1 研究動機 1
1.2 文獻回顧 5
1.3 研究目的 11
第二章 研究方法 12
2.1 高風險事件分析 12
2.1.1定義計畫範疇 12
2.1.2基本資料收集與分析 12
2.1.3危害辨識與風險分析 13
2.1.4決定高風險發生情境 14
2.2 災害發生情境分析 14
2.2.1建立可接受基準 14
2.2.2定義熱釋放速率曲線 15
2.2.3偵測系統反應時間測試 17
2.2.4火災後果模擬分析 17
2.2.5人員避難逃生模式分析 21
第三章 案例分析 23
3.1 高風險事件分析 23
3.1.1基本資料收集 23
3.1.2危害辨識與火災風險分析 25
3.1.3高風險情境之決定 30
3.2 災害發生情境分析 30
3.2.1建立可接受基準 30
3.2.2定義熱釋放速率曲線 31
3.2.3偵測系統反應時間測試 33
3.2.4火災後果模擬分析 35
3.2.5人員避難逃生模式分析 45
3.3 緊急應變對策之研擬 56
第四章 結論與建議 58
參考文獻 61
附錄一 製程/機台之危害辨識與風險分析 64
附錄二 火災危害辨識與風險分析 71
附錄三 模擬結果 77
附錄四 火災應變流程圖 137
[1] Richard D. Peacock, Paul A. Reneke, Walter W. Jones, Richard W. Bukowski, Glenn P. Forney, “A User’s Guide for FAST: Engineering Tools for Estimating Fire Growth and Smoke Transport,” NIST, 1997.
[2] A.H. Buchanan, “Fire Engineering Design Guide,”1st Edition, New Zealand Fire Structure Engineering Society and New Zealand Fire Protection Association, 1994.
[3] 陳俊勳, “建築物火災模式應用及架構評估研究,”內政部建築研究所, MOIS 871002, 1998.
[4] 熊光華, “加拿大NRCC建築火災危險及成本評估電腦模式參數分析及本土化適用性驗證研究,”內政部建築研究所, MOIS 871007, 1998.
[5] SFPE and Lund University, “3rd International Conference on Performance-Based Codes and Fire Safety Design Methods,” 2000.
[6] SFPE, “ SFPE Engineering Guide to Performance-Based Fire Protection Analysis and Design of Building,” 2000.
[7] Kevin B. McGrattan and Glenn P. Forney, “Fire Dynamics Simulator,” , 2000.
[8] J. H. Klote, D. Sc and P. E., “Prediction of Smoke Movement in Atria: Part I-Physical Concetpts,” ASHRAE Transactions, 1997.
[9] J. H. Klote and J. A. Milke, “Design of Smoke Management Systems,” American Society of Heating, Atlanta, GA, 1992.
[10] J. H. Klote, J.W. Fothergill, “Design of smoke control systems for buildings,” National Bureau of Standards, 1983.
[11] J. A. Clark and J. W. Harris, “Stairwell Pressurization in a Cold Climate,” ASHRAE Transactions, 1989.
[12] G. T. Tamura, R.A MacDonald, “Comparative Performance of Mechanical Smoke Exhaust System, Zoned Smoke Control, and Pressurized Building Method of Smoke Control,” ASHRAE Transactions, 1993.
[13] J. A. Milke, “Smoke Management for Covered Malls and Atria,” Fire Technology, pp.223-234, 1990.
[14] W. K. Chow, “A Comparison of the Use of Fire Zone and Field Models for Simulating Atrium Smoke-filling Process,” Fire Safety Journal, Vol. 25, pp. 337-353, 1996.
[15] J. H. Klote, D. Sc and P. E., “Prediction of Smoke Movement in Atria: Part I-Physical Concetpts,” ASHRAE Transactions, 1997.
[16] NFPA, “NFPA 92A,” 1999.
[17] NFPA, “NFPA 92B,” 1999
[18] SFPE and NFPA, “SFPE Handbook of Fire Protection Engineering,” 2nd Edition, 1995.
[19] J. J. Fruin, “Pedestrian Planning and Design,” Elevator World Educational Services Division, 1987.
[20] D. Canter, “Fires and Human Behavior,” John Wiley & Sons, 1980.
[21] J. D. Sime, “Crowd Psychology and Engineering,” Safety Science, Vol. 21, pp. 1-14, 1995.
[22] S. Gwynne, E. R. Galea, M. Owen, P. J. Lawrence, L. Filippidis, “A Review of The Methodologies Used in The Computer Simulation of Evacuation from the built environment,” Building and Environment, Vol. 34, pp. 741-749, 1999.
[23] HAZARD I: Fire Hazard Assessment Method, Software User’s Guide, Version 1.1, NIST Handbook 146,1991.
[24] P. A. Thompson and E. W. Marchant, “A Computer Model for the Evacuation of Large Building Populations,” Fire Safety Journal, Vol. 24, pp.131-148, 1995.
[25] S. Gwynne, E. R. Galea, M. Owen, P. J. Lawrence, L. Filippidis, “A Review of The Methodologies Used in The Computer Simulation of Evacuation from the built environment,” Building and Environment, Vol. 34, pp. 741-749, 1999.
[26] IES, “Simulex User Guide,” 1988.
[27] E. R. Galea, M. Owen, P. J. Lawrence, “Computer Modeling of Human Behaviour in Aircraft Fire Accidents,” Toxicology, Vol. 115, pp. 63-78, 1996.
[28] Fredrik Olsson, H.Frantzich, “An Approach Towards a Simple Risk Based Design Method,” 3rd International Conference on Performance-Based Codes and Fire Safety Design Methods Proceeding, Sweden, 2000.
[29] B. A. Mostue, K.Opstad, P. Hokstad and T. Paulsen, ”A Method for Estimating the Risk to Life during Fires in Buildings,” 3rd International Conference on Performance-Based Codes and Fire Safety Design Methods Proceeding, Sweden, 2000.
[30] Kenneth W. Dungan, “Practical Application of Risk-Based Methodologies,” Fire Protection Engineering, Issue No.10, pp.5-15, 2001.
[31] Emergency Services Training Institute, “Hazardous Materials Emergency Response Reference Manual,” Texas A&M University System, 1999.
[32] Gregory G. Noll, Michael S. Hildebrand, James G. Yvorra “Hazardous Materials,” 2nd Edition, Oklahoma State University, pp. 22, 227-235, 379-392, 1995.
[33] SFPE, “SFPE Engineering Guide to Performance-Based Fire Protection Analysis and Design of Building,” 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top