跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭仁忠
研究生(外文):Jen-Chung Hsiao
論文名稱:光電式安全防護裝置之失效分析與可靠度評估應用
論文名稱(外文):Failure Analysis and Reliability Assessments of Photoelectric Protective Device
指導教授:金大仁金大仁引用關係
指導教授(外文):Tai-Yan Kam
學位類別:碩士
校院名稱:國立交通大學
系所名稱:產業安全與防災學程碩士班
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:可靠度光電安全光幕發光二極體
外文關鍵詞:ReliabilityPhotoelectricSafety Light CurtainLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
      
傳統上,分析加速衰退試驗的數據係利用統計的方法,先求得產品壽命的分佈,然後應用壽命分佈的特性來預估產品的累積分佈函數或可靠度。但是當隨機參數超過一個或衰退路徑呈非線性時,這個方法就變得複雜且難以計算。因此,針對多隨機參數的問題,本研究論文應用直接數值積分法,以為上述問題之解決對策。
文中以俱有多隨機參數之安全光幕為例,首先針對其系統之組成、功能及操作環境等因素進行失效分析,找出適當之失效模型,建立系統可靠度之評估程序。其次針對其中之光束單元,依據投光器-IRLED之發光強度及受光器-Phototransistor之光接收能力的衰退特性,利用強度-應力干涉模型建構光束單元之極限狀態方程式。並且藉由Arrehenius Law建構其中之參數與作用應力間的關係式,以求得正常操作應力條件下之參數預估值。然後應用直接數值積分法對極限狀態方程式之失效或安全區域進行積分,求得正常操作條件下光束單元之失效機率或可靠度。最後,並以蒙地卡羅模擬法進行驗證,確認所提方法的可行性與有效性。
研究結果顯示,直接數值積分法和蒙地卡羅模擬法之結果相比較,當可靠度值大於0.5以上時,預估可靠度之最大誤差可以控制在5%以內,驗證本文所提方法之準確性與可行性。而本研究之可靠度評估方法不僅可用以解決安全光幕之可靠度評估問題,同時也提供一個解決高可靠度產品之可靠度評估問題的有效方法。

ABSTRACT
Traditionally when analyzing test data of accelerated degradation, it is used to analyze the distribution of product life through statistical methods. It needs to find the distribution of product life first, and then apply its characteristics to assess its cumulative distribution function or reliability. If the number of random parameters is more than one or it’s degraded path is nonlinear, the above-mentioned method may become too complicated to calculate it. Therefore, this study offers a method, direct numerical integrated method, to solve the problem of multi-random parameters.
The reliability analysis of a safety light curtain, which has multiple random variables, is used as an example in this study. The procedure of reliability assessment of the system is established via the analyses of the composition, function and operational conditions of the system. Secondly, it makes use of the strength-stress interference model to construct the limit state equation of light beam unit according to the degraded characteristics of light power of IRLED and Phototransistor. Also it makes use of the relationship between random parameters and temperature based on Arrehenius Law to obtain the predicted values of parameters at normal operational condition. Then, it applies direct numerical integrated method to integrate the failure or safety area of the limit state equation to obtain the failure probability or reliability of light beam unit at normal operational condition. Finally, it also verifies the proposed method by using Monte Carlo simulation.
The results show that the maximum predicted error between the proposed method and Monte Carlo simulation can be controlled in 5% as the reliability is higher than 0.5. This can verify the accuracy and validity of the proposed method. This study not only can be used to assess the reliability of safety light curtain but also provide an effective solution to the highly reliable products.

目 錄 頁 次
中文摘要. . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . ii
誌 謝 . . . . . . . . . . . . . . . . . . . . . . . . iv
目 錄. . . . . . . . . . . . . . . . . . . . . . . . v
表目錄. . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . vi
符號說明. . . . . . . . . . . . . . . . . . . . . . . ix
第一章 緒 論
1.1 研究背景與動機 . . . . . . . . . . . . . . . 1
1.2 研究目的. . . . .... . . . . . . . . . . . . 2
1.3 文獻探討 . . . . . . . . . . . . . . . . . . 3
1.4 研究方法與架構 . . . . . . . . . . . . . . . 5
第二章 安全光幕失效分析與可靠度評估
2.1 前言 . . . . . . . . . . . . . . . . . . . . 8
2.2 安全光幕之失效分析 . . . . . . . . . . . . . 8
2.3 安全光幕之可靠度評估 . . . . . . . . . . . . 12
第三章 理論分析
3.1 衰退路徑模式選擇. . . .. . . . . . . . . . . 24
3.2 參數分析 . . . . . . . . . . . . . . . . . . 25
3.3 參數與應力關係 . . . . . . . . . . . . . . . 32
第四章 可靠度評估方法
4.1 前言 . . . . . . . . . . . . . . . . . . . . 34
4.2 極限方程式的建立 . . . . . . . . . . . . . . 34
4.3 可靠度評估--直接數值積分法 . . . . . . . . . 36
4.4 可靠度驗證─蒙地卡羅模擬法 . . . . . . . . . 39
第五章 結果分析與討論
5.1 數據分析 . . . . . . . . . . . . . . . . . . 42
5.2 可靠度評估 . . . . . . . . . . . . . . . . . 43
5.3 分析與討論 . . . . . . . . . . . . . . . . . 44
5.4 結論 . . . . . . . . . . . . . . . . . . . . 45
5.5 未來研究方向 . . . . . . . . . . . . . . . . 46
參考文獻. . . . . . . . . . . . . . . . . . . . . . . 75
1.田中康夫, 2001,「機械設備的安全對策」, 安全工學, Vol.40, No.3, pp. 187-194.
2.OSTDA STANDARDS, 1990,光電半導體工業技術標準, 光電半導體工業技術發展諮詢委員會,中華民國七十九年初版.
3.M. Fukuda, 1991, Reliability and Degradation of Semiconductor Lasers and LEDs, Artech House , London.
4.A. Lastras-Martinez, 1978, “Internal Quantum Efficiency Measurements for GaAs Light Emitting Diodes”, J. Appl. Phys., 49(6).
5.J. M. Ralston and J. W. Mann, 1979, “Temperature and Current Dependence of Degradation in red emitting GaP LED’s”, J. Appl. Phys., 50(5).
6.Y. Tanaka and, T. Toyama, 1994, “Analysis of Current-Temperature-Light Characteristics of GaAsP Light-Emitting Diodes”, IEEE Transactions on Electron Devices, Vol. 41,No.8, pp. 1475-1477.
7.S. T. Tseng and, I. T. Chao, 1996, “Accelerated Degradation Experiment with Two Accelerated Variables”, working paper, Tsing-Hua University.
8.W. Nelson, 1990, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley and Sons, Inc., New York.
9.M. B. Carey and R. H. Koenig, 1991, “Reliability Assessment Based on Accelerated Degradation: A Case Study”, IEEE Transactions on Reliability, Vol.40, No.5, pp. 499-506.
10.C. J. Lu and W. Q. Meeker, 1993, “Using Degradation Measures to Estimate a Time-to-Failure Distribution”, Technometrics, Vol.35, No.2, pp. 161-173.
11.C. J. Lu and W. Q. Meeker, 1998, “Accelerated Degradation Test:Modeling and Analysis”, Technometrics, Vol.40, No.2, pp. 89-100.
12.C. H. Chiao and M. Hamada, 1996, “Robust Reliability for Light Emitting Diodes using Degradation Measurements”, Quality and Reliability Engineering International, Vol.12, pp. 89-94.
13.K. Yang and G. Yang, 1998, “Robust Reliability Design using Environmental Stress Testing”, Quality and Reliability Engineering International, Vol.14, pp. 409-416.
14.A. M. Freudenthal, M. Garrelts and M. Shinozuka, 1966, “The Analysis of Structural Safety”, Journal of Structure Division, ASCE, Vol.92, pp. 267-325.
15.L. Valter, 1987, “Load-Strength Modeling of Mechanics and Electronics”, Quality and Reliability Engineering International, Vol.3, pp. 149-155.
16.C. A. Cornell, 1969, “A probability-Based Structural Code”, Journal of the American Concrete Institute, Vol.66, No.12.
17.A. M. Hasofer and N. C. Lind, 1974, “Exact and Invariant Second Moment code format”, Journal of Engineering Mechanics, ASCE, No.EM1, Vol.100, pp. 111-121.
18.R. Rackwitz and B. Fiessler, 1978, “Structural Reliability under Combined Random Load Sequences”, Computer and Structures, Vol.9, pp. 489-494.
19.Y. T. Wu, H. R. Millwater and T. A. Cruse, 1990, “Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions”, AIAA Journal, Vol.28, No.9.
20.S. S. Rao, 1993, Reliability-Based Design, McGraw-Hill, New York.
21.J. A. Collins, 1981, Failure of Materials in Mechanical Design, Wiley, New York,.
22.金大仁, 鍾添淦, 2001, 整合型光機電設備安全技術研討會講義,精密機械研究發展中心.
23.柯建新, 1996, 「加速衰變試驗之衰變模型挑選問題」, 清華大學統計所碩士論文.
24.G. 萊希納,等著, 吳振環等譯, 1994, 機械產品的可靠性:零件與系統的可靠性估計, 北京:機械工業出版社.
25.T. Y. Kam, K. H. Chu, and E. S. Chang, 1999, “Reliability Assessment of Laminated Composite Plates with Random Strength Parameters”, AIAA Journal., Vol.37, No.12, pp. 1648-1655.
26.溫知錡, 1997,「逐步應力衰變模型推估LED產品壽命之研究」, 清華 大學統計所碩士論文.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top