跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陸立德
研究生(外文):Lu Li-teh
論文名稱:延伸LQG設計法則於結構主動控制器設計
論文名稱(外文):Extended LQG Methodology for Active Structural Controller Design
指導教授:蔣偉寧蔣偉寧引用關係唐治平唐治平引用關係
指導教授(外文):Wei-Ling Chiang,Jhy-Pyng Tang
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:133
中文關鍵詞:結構主動控制最佳控制
外文關鍵詞:active structural controloptimal control lawh2 optimal controlhinf optimal controlmix h2 and hinf control lawLMIs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對結構主動控制文獻中最常被利用到LQG最佳控制理論作延伸性的拓展與探討。本文將LQG最佳控制器的應用拓展至LQG/LTR強健控制器,和現有的文獻相比可以看出LQG/LTR強健控制器應用在結構主動控制上可以對系統提供較佳的穩定裕度。
近來,H2 和 H¥ 最佳控制理論被應用在結構主動控制上,文獻記載應用H2 和 H¥ 最佳控制理論可有效的減低結構在強風與地震下的反應。本文將闡述在適當選擇權重函數下,定義於時間域的LQG最佳控制器和定義於頻率域的H2 最佳控制器可以在數學上全等。除了將LQG最佳控制器的應用拓展至LQG/LTR強健控制器外,本論文所探討另一個重點是嘗試將H¥ 最佳控制的理論精神融入LQG或說是H2 最佳控制器的設計考慮中。此時吾人不再緊守著LQG、H2 和H¥ 最佳控制理論中成本函數必須最佳化的要求,而是在這些成本函數求取適當的妥協。從本文的結果可以知道,不同最佳化控制理論中成本函數間的妥協可以使控制器的設計更有彈性。傳統的LQG、H2 和H¥ 最佳控制器可以由兩項聯立的Riccati Equation求得,但是不同最佳化控制理論中成本函數間的妥協問題卻不能由簡單的聯立的Riccati Equation求得。近來,interior-point method的出現與應用使得LMIs(Linear Matrix Inequalities)成為一套有用的數學工具。本文中,利用單一的Lyapunov函數將不同最佳化控制理論成本函數間的妥協問題轉換成LMIs並實際求解出控制器。吾人將此控制器設計法則應用到ASCE Committee on Structural Control提出的受風力影響高樓結構主動控制標準問題上可以得到滿意的結果。
The LQG optimal control theory used extensively in the literatures for active structural control is extended in this dissertation. Since the LQG controller provides no guarantee for robust stability, we extend the LQG controller to the LQG/LTR controller. Simulations show that LQG/LTR controllers provide better stability margin than those presented in the published literatures.
Recently, H2 and H¥ optimal control techniques were introduced for active structural control problem, which results in effectual approaches in the design of controllers for seismic and wind excited buildings. Since LQG optimal control criteria defined in time domain can be numerically equivalent to the H2 optimal control criteria defined in frequency domain with appropriate selection of design weightings. In this dissertation, we present a control strategy that is the simultaneous treatment of both H2 and H¥ criteria and this control strategy quantitatively demonstrates design tradeoffs. Thus, we extend the popular LQG controller to the mixed LQG/H¥ or H2/H¥ controller. This mixed control problem can be formulated by linear matrix inequalities in terms of a common Lyapunov function. Solving linear matrix inequalities is a convex optimization problem. Simulation and design results demonstrates that decreasing H¥ attenuation constraint can be used to reduce the structural response under wind excitations at the expense of increasing H2 performance index and control efforts of the actuator.
Contents pages
1. Introduction1
1.1 Background and Motivations 1
1.2 Main Contributions5
1.3 Organization of This Dissertation6
2. Optimal Control Theory7
2.1 The Linear Quadratic Regulator8
2.2 The Kalman Filter9
2.3 LQG Optimal Controller: combined optimal state estimation and optimal
state feedback10
2.4 H2 optimal controller12
2.5 LQG: a special H2 optimal controller14
3. LQG/LTR Robust Controller for Active Structural Control16
3.1 Equations of Motion of Structural Systems16 3.2 Control Actions16
3.3 Collocated Velocity Feedback17
3.4 Model Reduction18
3.5 Robustness Requirement and Design Specifications22
3.6 LQG/LTR Robust Controllers25
3.7 Numerical Simulation29
4. Controller Synthesis: LMIs (Linear Matrix Inequalities) Approach39
4.1 Linear Matrix Inequalities39
4.2 Performance measurement40
4.2.1 H¥ system norm40
4.2.2 H2 system norm43
4.3 Full order output feedback controller construction with LMIs44
4.3.1 H¥ optimal controller synthesis45
4.3.2 H2 optimal controller synthesis 48
4.3.3 Controller construction with multiple objectives49
5. Application to Active Structural Control Benchmark Problems52
5.1 76-Story Building and Model53
5.2 Wind Excitations56
5.2.1 Davenport wind load spectrum for along-wind excitations57
5.2.2 Across-Wind Excitations from the Results of Wind Tunnel Tests 59
5.3 Design Constraints60
5.4 Performance Criteria61
5.4.1 Performance Criteria for Davenport wind load spectrum 61
5.4.2 Performance Criteria for Wind Tunnel Tests64
5.5 Statements of the Control Objectives66
5.6 LMI Formulation of the Design Specifications68
5.7 Numerical Analysis and Simulation Results71
5.7.1 the Benchmark Structure under Davenport Wind Load Spectrum71
5.7.2 the Benchmark Structure under Across-Wind Excitations from
the Results of Wind Tunnel Tests80
6. Conclusion Remarks87
Bibliography88
Appendix92
List of Tables pages
3.1. Maximum magnitudes of response quantities for a base-isolated building 103
3.2. Maximum magnitudes of response quantities for a fixed-base full-scaled building 103
5.1. Peak Response Quantities of the Benchmark Building Installed AMD System
with Different Controllers 104
5.2 RMS Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 105
5.3 H¥ Attenuation Constraints, Actual H¥ Attenuation, H2 Performance Bound
and H2 Actual Performance with Different Controllers 106
5.4 Evaluation Criteria for the sequential H2 Controllers 107
5.5 Damping ratios of the First Five Vibrational Modes with Different Controllers
and the Uncertainty of Building Stiffness 108
5.6 Peak Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 109
5.7 RMS Response Quantities of the Benchmark Building Installed AMD
System with Different Controllers 110
5.8 H¥ Attenuation Constraints, Actual H¥ Attenuation, H2 Performance Bound
and H2 Actual Performance with Different Controllers 111
5.9 Evaluation Criteria for the sequential H2 Controllers
case : 112
case : 113
case : 114
List of Figures pages
2.1 LQG controlled plant 116
3.1 LQG/LTR controller block diagram 117
3.2 Block Diagram of a General Compensated Plant with Uncertainty 117
3.3 Block Diagram of LQ Regulator 118
3.4 Block Diagram of Kalman Filter 118
3.5 Block Diagram of the Target Feedback Loop for the Augmented Plant 118
3.6 Block Diagram of LQG/LTR Robust Controller 119
3.7 (a) Base-Isolated Structural Model 119
3.7 (b)Structure Model with Active Bracing 119
3.8 EL-CENTRO Earthquake 120
3.9 Deformation of First and Fourth Floor Units 120
3.10 Absolute Acceleration of First and Fourth Floors 121
3.11 Bode Plots of Transfer Functions: Actuator to the First Floor Deformation 121
3.12 Two-State Reduced Order Model and Additive Modeling Error with Robustness 122
3.13 LQG/LTR Robust Controller Design Result 122
3.14 Frequency response: From earthquake excitations to first floor deformation 123
3.15 Control force (solid) and reference input (dashed) 123
5.1(a): Plan View of the 76-Story 124
5.1(b): Elevation View of the Benchmark Building. 124
5.2 Time Histories of Response Quantities of the 75th Floor Using LQG Control:
(a) Displacement Responses (b) Acceleration Responses (c) Required Control Force. 125
5.2 Time Histories of Response Quantities of the 75th Floor Using K2i(s):
(d) Displacement Responses (e) Acceleration Responses (f) Required Control Force. 125
5.3 Power Spectral Densities of the 75th Floor Using Different Controllers: 126
(a) Displacement PSD for “No Control”, “LQG Controller”, and “ K2i Controller”;
(b) Acceleration PSD for “No Control”, “LQG Controller”, and “ K2i Controller”;
(c) Acceleration PSD for “LQG Controller”, “ K2i Controller” and “K25 “ Controller.
5.4 Trade-off Lines Between the and performances 127
5.5 Additive Uncertainty Represents the Spillover Effects 128
5.6 vs. for Controllers and 128
5.7 Evaluation Criteria vs. Attenuation Constraints with the Uncertainty of
Building Stiffness 129
5.8 Time Histories of Response Quantities of the 75th Floor Using LQG Control:
(a) Displacement Responses (b) Acceleration Responses (c) Required Control Force. 130
5.8 Time Histories of Response Quantities of the 75th Floor Using K2i'':
(d) Displacement Responses (e) Acceleration Responses (f) Required Control Force. 130
5.9 (a) The maximal singular values for wind excitations to the displacement of the
75th floor with the LQG controller; the controller and No Control case.
(c) The maximal singular values for wind excitations to the acceleration of the
75th floor with the LQG controller; the controller and No Control case. 131
5.10 Trade-off Lines Between the and performances 132
5.11 vs. for Controllers and 133
Abdel-Rohman, M. and Lepiholtz,H.H. (1981)," Structural control by pole assignment method," Journal of Engineering Mechanics Division, ASCE, Vol.107, No.ST7, July, pp1313-1325.
Ankireddi, S., Yang, J. N. and H.T.Y. (1996). “Simple ATMD control methodology for tall buildings subject to wind loads.” J. Struct. Engrg., ASCE,122(1),83-91.
Athans, M., Kapasouris, P., Kappos, E., and Spang H. A., (1986). "Linear quadratic gaussian with Loop-Transfer-Recovery Methodology for the F-100 engine." Journal of Guidance, Control and Dynamics, Vol. 9, No.1 , pp.45-51.
Balas, M. J. (1979). "Direct velocity feedback control of large space structures." J. of Guidance, Control and Dynamics, Vol. 9, No.1, pp. 85-91.
Boyd, S., El Ghaoui, E.Feron, and V. Balakrishnan, "Linear Matrix Inequalities in Systems and Control Theory". Philadelphia, PA:SIAM,1994.
Cao, H., Reinhorn, A.M., and Soong, T.T.(1997).”Design of an active mass damper for a tall TV tower in Nanjing, China.’J. Engrg. Struct.,20(3),134-143.
Chen, Pei-Yen, (1990). " Vibration suppression of flexible structures using collocated velocity feedback and nonlocal actuator control," Ph.D. Dissertation, Cornell University.
Chilali, M., Gahinet, P., (1996).“ H¥ design with pole placement constraints :an LMI approach.” IEEE Trans. Automatic Contr.,Vol.41, NO.3, 358-366.
Chung, L. L., Reinhorn, A. M. and Soong, T. T. (1988)" Experiments on active control of seismic structures," ASCE, Journal of Engineering Mecanics, Vol.114, No.2,pp.241-255.
Davison, E. J.(1966). ”A method for simplifying linear dynamic systems.” IEEE Trans. Automatic Control, 11(1),93-101.
Doyle, J. C., and G. Stein, (1981)." Multivariable Feedback Design: Concepts for Classical / Modern Synthesis," IEEE Trans.on Automatic Control, Vol.AC-26, No.1, pp.4-16, FEB.
Dyke, S.J.,Spencer Jr., B.F., Quast, P.Sain, M.K., Kaspari Jr., D.C., and Soong, T.T. (1996).”Accerleration feedback control of MDOF structures.”J. Engrg. Mech., ASCE,122(9),907-919.
Horn, R. and C. Johnson. "Topics in Matrix Analysis". Cambridge University Press, Cabridge, 1991.
Jabbari, F., Schmitendorf, W. E. and Yang, J. N., (1995). "H¥ Control for seismic-excited buildings with acceleration feedback." J. Engrg. Mech., ASCE, 121(9), 994-1002.
J. C. Doyle, K. Zhou, K. Glover, and Bodenheimer, (1994)”Mixed H2 and H¥ performances objectives II Optimal Control,”IEEE Trans. Automatic Contr. ,Vol. 39, 1575-1587.
Kose, I. E., Schmitendorf, W. E., Jabbari, F., and Yang, J. N.(1996) ” H¥ active seismic response control using static output feedback.” J. Engrg. Mech., ASCE, 122(7), 651-659.
Li-Teh Lu, Wei-Ling Chiang and Jhy-Pyng Tang, (1998).”LQG/LTR Control Methodology in Active Structural Control” J. Engrg. Mech., ASCE.Vol.124, No.4, pp446-454.
Lieven Vandenberghe and Stephen Boyd, (1994) “SDPSOL: Semi-Definite Programming Solver”.
Meirovitch, L. and Baruch, H. (1980) "Implementation of the IMSC methid by means of a varying number of actuators," Paper No.82-1035, AIAA/AAS/Astrodynamic Conference, San Diego CA.
Meirovitch, L. and Baruch, H. (1982)"Control of self-adjoint distributed parameter systems," Journal of Guidance, Control and Dynamics ,5, pp.60-66.
Michael, Green. and David, J. N. Limebeer (1995) ² Linear Robust Control,² Prentice Hall International, Inc.
Moore, B. C. (1981)." Principal component analysis in linear systems: controllability, observability, and model reduction," IEEE Trans. Automatic Control, Vol. AC-26, pp.17-31.
Ohtori,Y., R.E. Christenson and B.F. Spencer, Jr. (1999). "Benchmark Control Problems for Seismically Excited Nonlinear Buildings", Benchmark Problem Package Available at the World Wide Website:http://www-ce.engr.ccny.edu/people/faculty/Agrawal/benchmark.html
R. Nikoukhah, F. Delebecque and L. El Ghaoui (1998) LMITOOL: a Package for LMI Optimization in Scilab.
Ridgely, D. Brett., Banda, S. S., McQuade, T. E., and P. J. Lynch, (1987). " Linear quadratic gaussian with Loop-Transfer-Recovery Methodology for an unmanned aircraft." Journal of Guidance, Control and Dynamics, Vol. 10, No.1 , pp.82-89.
Samli, B., Yang, J. N., and Yeh, C.T.(1985).“ Control of lateral-torsional motion of wind-excited buildings.”J. Engrg. Mech., ASCE. 111(6),777-796.
Schmitendorf, W.E., Jabbari, F., and Yang, J. N. (1994). "Robust control techniques for buildings under earthquake excitation." J. Earthquake Engrg. and Struct. Dynamics, 23(5), 539-552.
Spencer, B. F., Suhardjo, J., and Sain, M. K. (1994)." Frequency domain optimal control strategies for a seismic protection." J. Engrg. Mech. ASCE, 120(1), 135-159.
Spencer, B. F., Dyke, S.J., and Deoskar, H.S (1998a).”Benchmark control control problems in structural control .I: Active mass driver system.” J. Earthquake Enrgr. And and Struct. Dynamics .
Spencer, B. F., Dyke, S.J., and Deoskar, H.S (1998b).”Benchmark control control problems in structural control .I: Active tendon system.” J. Earthquake Enrgr. And and Struct. Dynamics .
Spencer, Jr. B. F., Christenson, R.E., and Dyke, S. J.(1998c), "Next Generation Benchmark Control Problem For Seismically Excited Buildings", Proc. 2 nd World Conf.on Structural Control, Vol.2, pp.1351-1360, John Wiley & Sons, N.Y..
Stein, G. and Athans M., (1987)." The LQG/LTR procedure for multivariable feedback control design, " IEEE. Transactions on Automatic Control ,Vol. AC-32, No.2, pp.105-114.
Suhardjo, J., Spenser, B. F. ,and Ashan Kareem. (1992a). "Frequency domain optimal control of wind excited buildings." J. Engrg. Mech., ASCE, 118(12), 2463-2481.
Suhardjo, J., Spenser, B. F. ,and Ashan Kareem. (1992b). "Active control of wind excited buildings: a frequency domain based design approach." J. Wind Engrg. and Industrial Aerodynamics, Vol.41, 1985-1996.
Wu, J.C., Yang, J.N., and Schmitendorf, W.(1998a).”Reduced-order H¥ and LQR control for wind-excited tall buildings.” J. Engrg. Struct.,20(3),222-236.
Wu, J.C., Yang, J.N.(1998b).”Active control of transmission tower under stochastic wind.”J. Engrg. Struct.,124(11),1302-1312
Yang, J. N., (1975) "Application of optimal control theory to civil engineering structures," Journal of Engineering Mechanics Division, ASCE , Vol.101 , No.EM6 , DEC., pp819-838.
Yang, J. N., and Samali, B. (1983).”Control of tall buildings in along-wind motion.” J.Struct. Engrg., ASCE,109(1), 50-68.
Yang, J. N., Abbas Akbarpour and Peiman Ghaemmami, (1987)"New control algorithms for structural control," Journal of Engineering Mechanics Division, ASCE, Vol.113 , No.9 , SEP., pp1369-1386.
Yang, J. N., Wu, J. C., and Agrawal, A. K., (1995a). "Sliding mode control for seismically excited linear structures." J. Engrg. Mech., ASCE, 121(12), 1386-1390.
Yang, J. N., Wu, J. C., Agrawal, A. K., and Li, Z. (1995b). "Sliding mode control for nonlinear and hysteric structures." J. Engrg. Mech., ASCE, 121(12), 1330-1339.
Yang, J. N., Wu, J. C., Agrawal, A. K., and Hsu, S.Y.(1997),”Sliding mode control with compensators for wind and seismic response control.”J. Earthquake Enger. And Struct. Dyn., 26, 1137-1156.
Yang, J.N., Wu, J.C., Samali, B. and Agrawal, A.K. (1998), “A Benchmark Problem for Response Control of Wind-Excited Tall Buildings”, Proc. 2nd world Conference on Structural Control, Vol.2, pp. 1407-1416, John Wiley & Sons, New York.
Yang, J. N., Agrawal, A. K., Samali, B. and Wu, J. C. (1999),”A Benchmark Problem for Response Control of Wind-Excited Tall Buildings”, Benchmark Problem Package Available at the World Wide Website:http://www.eng.uci.edu/civil/civileng.html
Yao, J.T.P. (1972). "Concept of structural control." J. Struct. Div., ASCE, 98(7), pp.1567-1574.
Yu. Nesterov and A. Nemirovsky. "Interior point polynomial methods in convex programming", volume 13 od Studies in Applied Mathenatics. SIAM, Philadelphia, PA, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 徐克成、張火燦,1993,「績效評估與其他人力資源管理功能結合之研究」,人力資源學報,第3期,頁95-112。
2. [3]電信研究 詹焜燐 等 人、手孔蓋防震方法之研究
3. 洪榮昭,1996,「技術教育訓練的需求分析方式」,就業與訓練,第14卷第5期,頁40-45。
4. 余品嫻,1997,「政府部門中訓練評估之研究」,研考雙月刊,第21卷第1期,頁84-93。
5. 王居卿、程德貞,2000,「訓練模式與其成效之關係探討-以高科技產業為例」,淡江人文社會學刊,第5期,頁41-78。
6. 莊智明、張基成,1998,「科技化企業訓練新趨勢下的網路化教育訓練-網際網路與全球資訊網在企業教育訓練上的應用」,遠距教育,第8期,頁12-18。
7. 張火燦、田靜婷,1994,「訓練遷移相關因素之研究」,人力資源學報,第4期,頁63-81。
8. 傅祖壇、李隆安、林億明,1998,「多元排序性Probit的估計:個體資料法」,經濟論文,第26卷第4期,頁349-381。
9. 黃同圳、許宏明,1996,「高科技產業的教育訓練制度與組織績效之相關性研究」,科技管理學刊,第1卷第1期,頁57-83。
10. 黃英忠、溫金豐,1995,「外在經營環境與企業教育訓練實施及經營績效關係之研究」,人力資源學報,第5期,頁41-61。
11. 黃臺生、任可怡,1995,「中央政府機關訓練績效評估之調查分析」,空大行政學報,第3期,頁227-251。
12. 溫肇東、陳銘昆,1998,「企業導入ISO14000之研究-以台灣公司為例」,中山管理評論,第6卷第1期,頁195-210。
13. 蔡錫濤,2000,「訓練評鑑的焦點與模式」,人力資源發展月刊,第156期,頁1-12。
14. 41. 劉紹興,「職業性癌症的研究趨勢」, 勞工安全衛生簡訊第29期