(3.235.108.188) 您好!臺灣時間:2021/02/27 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃偉智
研究生(外文):Wei-Chi Hwang
論文名稱:貼片補強構件之層間應力分析
論文名稱(外文):Interlaminar Stress Analysis of Patch Repaired Structural Components
指導教授:王仲宇
指導教授(外文):Chung-Yue Wang
學位類別:博士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:293
中文關鍵詞:層間應力脫層界面強度非線性錯開式
外文關鍵詞:interlaminar stresspatchFRPconcretedebondingconcentrationnonlinearstaggered
相關次數:
  • 被引用被引用:8
  • 點閱點閱:256
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
摘要
關鍵詞:層間應力、脫層、界面強度、非線性、錯開式
本論文探討貼片補強構件之層間應力分布,整體論文包含三部份。第一部份採用複利葉級數分析法構建混凝土構件貼片補強黏結強度測試系統中之層間應力分析模型。探討應力集中現象和貼片黏貼度、膠層厚度以及貼片、膠層和混凝土材料性質之間的關係,並配合國內外一系列的實驗數據,探討極限狀態下貼片、膠層、補強構件間之層間應力分布情形。透過解析解和實驗數據的反算之後,發現貼片、膠層、補強構件間之真正層間應力黏結強度和混凝土材料之抗拉強度 之間趨近於一個固定比值,當貼片長度適當時其值固定而不隨貼片搭接長度之不同而改變,此一研究提出一貼片黏接強度實驗的解析模型,工程人員可依據本論文之反算方式,估算出一合理之黏結強度值,從而更能掌握正確的破壞荷載發生時刻,使得結構補強之極限荷載可作更精確的評估。第二部份以解析法探討鋼筋混凝土梁以FRP修補後之貼片和混凝土結構承受彎曲荷載下之層間應力問題;分析模型中將鋼筋及混凝土材料之非線性性質亦納入考慮,可較完整的探討貼片補強之RC梁發生破壞時整體結構之應力分布,研究發現鋼筋降伏及自由端效應,會造成FRP貼片在局部位置的層間剪應力之集中現象。此一解析所得之層間應力分佈現象,可用以解釋許多實驗所觀察到的FRP剝離或脫層現象。第三部份探討以錯開式的貼片補強方式,由文中所推導之錯開式貼片補強RC梁之層間應力解析解可合理的求得以錯開式的貼片補強時,所產生之層間應力集中的位置及大小。於所推導出之結果發現不僅尾端處會出現應力集中,除此之外於錯開斷面之不連續處也會出現層間應力集中,而由後續的研究中更發現此應力集中之大小也可能產生界面脫層的發生。本文中所推導出之解析式為前人的研究中所無法得到之結果,藉由本文中所推導出之多層錯開式貼片補強RC梁之層間應力解析式於代入適當之邊界條件後,可作為往後進行多層漸錯式貼片補強之層間應力分析之基礎,可使未來進行工程設計時視需要而進行更精密可靠之斷面設計;另外於文中並藉由變化膠層厚度、貼片厚度、貼片楊式模數等方式進行參數研究。可由各種不同之複合模式以研究何者能更為降低界面之層間應力,以提高貼片補強構件之承載力。
In this thesis a series of analytical solutions of the interlaminar stresses of various types of patch repaired structural components are derived by Fourier analysis method. These analytical solutions can demonstrate how the stress concentration developed under various combinations of patch arrangement, loading condition and material properties and can reasonably explain the failure mechanisms of patched members observed in experiments.
In the first part of this thesis, stress distributions among interfaces of a typical joint used for evaluating the shear strength of bond between patch plate and substrate are derived. This prediction model was further applied to back calculate the true bonding strength between FRP and concrete. It is found that the true bonding strength is many times higher than the one obtained by averaging the ultimate load with bonding area. From this true bonding strength value, a more precise loading capacity can be predicted for the retrofitting design of RC beam using FRP sheet.
Bending analysis of reinforced concrete (RC) beams patched with steel or fiber reinforced plastic (FRP) plate is presented in the second part of this thesis. The non-linear stress-strain relationships of concrete and steel reinforcement are considered in the analysis model. The variation and distribution of the interfacial normal and shear stresses between the patching plate and RC beam for various combinations of load levels, plate thickness, material type, adhesive thickness and plate length are evaluated. It is found that the yielding of the steel reinforcements inside the concrete beam causes a discontinuous distribution of shear stress at the FRP-concrete interface. This discontinuous distribution of interfacial shear stress together with the stress concentration effect around the ends of the patched plate are applied to explain the debonding and peeling off failure mechanisms typically observed in the tests. It suggests that the proposed analytical model can be applied to estimate the ultimate load carrying capacity of the patch retrofitted RC beam for structural engineers.
In the third part of this thesis, analytical model for the interfacial stress distributions of n layers staggering patched on RC beam is derived. Variations and distributions of the interfacial normal and shear stresses among patch plates and RC beam for various combinations of plate thickness, material type, adhesive thickness are investigated in detail.
~ 目錄 ~ 頁次
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻回顧 4
2-1 結構物的損壞及維修方法 4
2-2貼片補強技術發展及原理 6
2-3貼片補強使用之黏結劑 6
2-3-1黏結劑的選擇 6
2-3-2 以環氧樹脂作為黏結劑 7
2-4貼片補強使用之貼片材料 7
2-4-1貼片材料的發展 7
2-4-2 FRP複合材料之組成及分類 9
2-5 溫度對貼片補強的影響 9
2-6 濕度對貼片補強的影響 10
2-7 補強實驗之相關研究 11
2-8 貼片補強構件之層間應力分析 18
第三章 混凝土構件貼片補強真實黏結強度之評估模型 33
3-1前言 33
3-2理論推導 35
3-2-1應力分析之第一階段 36
3-2-2以最小功原理解an 44
3-2-3應力分析之第二階段 47
3-2-4應力之合成 53
3-3參數研究 54
3-3-1改變膠層厚度的影響性 54
3-3-2改變貼片厚度的影響性 55
3-3-3改變膠層材料參數的影響性 56
3-3-4改變FRP材料參數的影響性 56
3-3-5 搭接長度和k1值之研究 57
3-4真實黏結強度之反算分析 58
3-4-1試體的配置及參數使用介紹 59
3-4-2反算分析結果及討論 60
3-4-3反算膠結層強度和斜剪實驗的比較 61
3-5結果與討論 62
第四章 貼片補強 RC梁層間應力之非線性分析研究 90
4-1前言 90
4-2貼片補強RC梁層間應力之理論模型 91
4-2-1第一階段 91
4-2-2第二階段 95
4-2-3第三階段 97
4-3實例分析 98
4-3-1分析目的 98
4-3-2分析模型規劃 99
4-3-3實驗結果分析 99
4-4參數研究 102
4-4-1參數研究目的 102
4-4-2未黏貼長度(Lc)的變化對層間應力的影響 103
4-4-3貼片厚度(dp)的變化對層間應力的影響 104
4-4-4膠層材料性質(Ga)的變化對層間應力的影響 105
4-5 結論建議 106
第五章 錯開式貼片補強RC梁之層間應力分析 122
5-1研究背景及分析目的 122
5-1-1前言 122
5-1-2應力之分析體系及理論推導步驟 122
5-2雙層錯開式貼片補強之層間剪應力的推導 123
5-3雙層錯開式貼片補強之層間正應力的推導 130
5-4雙層錯開式貼片補強之模式驗證 144
5-4-1驗證目的 144
5-4-2分析模型規劃 144
5-4-3模式驗證 144
5-5雙層錯開式貼片補強之參數研究 147
5-5-1參數研究目的 148
5-5-2參數研究之規劃 148
5-5-3改變lb、lc之影響 148
5-5-4改變da1之影響 149
5-5-5改變da2之影響 150
5-5-6改變dp1之影響 150
5-5-7改變Ep1之影響 151
5-5-8改變Ep2之影響 152
5-6多層錯開式貼片補強版之推導 153
5-6-1推導目的 153
5-6-2多層錯開式層合版之分析體系及理論推導步驟 153
5-6-3三層錯開式層合版之層間剪應力的推導 154
5-6-4三層錯開式層合版之層間正應力的推導 157
5-6-5多層漸進層合版之層間應力推導規律 162
5-7 結論建議 165
第六章 綜合結論與建議 207
6-1 綜合結論 207
6-2 未來發展方向 209
附錄(一) 211
附錄(二) 218
附錄(三) 224
附錄(四) 238
附錄(五) 239
附錄(六) 261
附錄(七) 263
附錄(八) 264
附錄(九) 264
附錄(十) 265
參考文獻 267
表目錄 頁次
表(3-1) 第一階段和第二階段之各應力分量之整理 65
表(3-2) 改變不同膠層厚度(h2) 66
表(3-3) 各補強構件之材料性質 66
表(3-4) 改變不同FRP厚度(h) 66
表(3-5) AP1、AP2、AP3、AP4之構件尺寸 67
表(3-6) 以FRP為補強工具改變膠層材料時各構件之材料性質 67
表(3-7) FP1、FP2、FP3之構件尺寸 67
表(3-8) 以FRP為補強工具改變FRP材料性質時各構件之材料性質 68
表(3-9) 拉桿為混凝土搭接長度和k1的對應關係 68
表(3-10) 松 木、FRP、膠 層之材料性質 68
表(3-11) 拉桿為松木時搭接長度和k1的對應關係 69
表(3-12) 實驗試體以東燃株式會社之實驗配置方式 69
表(3-13) 何駿傑之部份試體構成表 69
表(3-14) 何駿傑試體的強度及破壞模態 70
表(3-15) 反算分析綜合整理 70
表(3-16) 文獻[52]中斜剪實驗之實驗參數表 70
表(4-1) Roberts、Quantrill 等人所使用之相關參數 107
表(4-2) 參數研究混凝土和鋼筋的力學性質 108
表(5-1) 驗證之輸入參數(a) 167
表(5-2) 驗證之輸入參數(b) 167
表(5-3) Roberts之參數定義 168
圖目錄 頁次
圖2-1 貼片補強法之示意圖 21
圖2-2 各種補強材料與混凝土之應力-應變關係圖 21
圖2-3 複合材料之組成示意圖 22
圖2-4 養治溫度與樹脂反應關係圖 22
圖2-5典型黏結效果劣化曲線 23
圖2-6鋼鈑補強的錨定方式 23
圖2-7預設裂縫的混凝土樑與斜剪試驗試體 24
圖2-8 Wall斜剪試驗試體尺寸圖 24
圖2-9 各種規範的斜剪試驗尺寸 25
圖2-10 Abu-Tair 斜剪試驗之試體尺寸及製作過程 25
圖2-11 Abu-Tair MMOR試驗之試體尺寸及製作過程 26
圖2-12 CFRP貼片補強斷面尺寸 26
圖2-13 GFRP貼片補強之貼片配置圖 27
圖2-14 鋼鈑貼於混凝土樑之拉力側 28
圖2-15 黏結層端點的剪應力及正向應力 28
圖2-16 CFRP貼片補強配置示意圖 29
圖2-17 GFRP貼片剪力補強配置示意圖 30
圖2-18碳纖維貼布剪力強度試驗試體尺寸 31
圖2-19 Swamy環氧樹脂剪力強度試驗配置 32
圖2-20 碳纖維布貼片直接剪力試驗 32
圖3-1-1貼片補強黏接強度實驗系統及分析模型示意圖 71
圖3-2-1疊加的第一部份 71
圖3-2-2疊加的第二部份 72
圖3-2-3拉桿構件中央斷面應力均佈假設成立所需長度之示意圖 72
圖3-2-4 層間應力τ0、σ0、τ1、σ1及其正方向 73
圖3-2-5 於貼片取一微分段的力平衡圖 74
圖3-2-6 於膠層取一微分段的力平衡圖 74
圖3-2-7 於拉桿取一微分段的力平衡圖 75
圖3-2-8 貼片中的剪應力 75
圖3-2-9 取左半部份的Stage 2中央斷面的各應力 76
圖3-2-10第二階段之中央斷面受力圖 76
圖3-2-11 層間應力τ0、σ0、τ1、σ1及其正方向 77
圖3-2-12 於貼片取一微分段的力平衡圖 78
圖3-2-13 於膠層取一微分段的力平衡圖 78
圖3-2-14 於拉桿取一微分段的力平衡圖 79
圖3-3-1以相同的外力P加載作用之下改變膠層厚度時混凝土和膠層界面之
層間剪應力 79
圖3-3-2以相同的外力P加載作用之下改變膠層厚度時混凝土和膠層界面之
層間正應力 80
圖3-3-3 以相同的外力P加載作用之下改變FRP厚度時混凝土和膠層界面之
層間剪應力 80
圖3-3-4 以相同的外力P加載作用之下改變FRP厚度時混凝土和膠層界面之
層間正應力 81
圖3-3-5 以相同的外力P加載作用之下改變''鋼板厚度時混凝土和膠層界面之
層間剪應力 81
圖3-3-6 以相同的外力P加載作用之下改變''鋼板厚度時混凝土和膠層界面之
層間正應力 82
圖3-3-7 以相同的外力P加載作用之下改變''膠層材料參數時混凝土和膠層
界面之層間剪應力 82
圖3-3-8 以相同的外力P加載作用之下改變''膠層材料參數時混凝土和膠層
界面之層間正應力 83
圖3-3-9 以相同的外力P加載作用之下改變FRP材料參數時混凝土和膠層
界面之層間剪應力 83
圖3-3-10 以相同的外力P加載作用之下改變FRP材料參數時混凝土和膠層
界面之層間正應力…………………......................................................... 84
圖3-3-11 拉桿為混凝土時不同搭接長度之下之k1值 84
圖3-3-12 拉桿為松木時不同搭接長度之下之k1 85
圖3-4-1 文獻[54]的實驗配置(a)及實驗結果(b)(Forca Tow Sheet User Manual) 85
圖3-4-2 何駿傑試體搭接長度示意圖 86
圖3-4-3 混凝土試體之破壞模態 86
圖3-4-4 實驗試體(J1、J2、J3、D2、D8、D14、D16、D17)之層間剪應力分布曲線 87
圖3-4-5 實驗試體(J1、J2、J3、D2、D8、D14、D16、D17)之層間正應力分布曲線 87
圖3-4-6 Sketch of tensile + shear and compression + shear concrete —
adhesive specimens......................................................................................88
圖3-4-7 Mohr-Columb failure envelope for concrete-adhesive interface[52] ............88
圖3-4-8 將J2、J3、D2、D8、D16、D18繪於圖5-7的拉力側(Tension side)的數據以及其線性迴歸曲線.............................................................................89
圖4-2-1貼片補強之RC梁之分析體系 109
圖4-2-2第一階段之內力 110
圖4-2-3以貼片材料為主並忽略混凝土受拉區之轉換斷面 110
圖4-2-4沿 方向的應變 111
圖4-2-5 Kent and Park之混凝土應力應變關係模型 111
圖4-2-6混凝土構件受外力後之彎矩圖 112
圖4-2-7梁全長分成 段後每一段的曲率值 112
圖4-2-8第一階段(材料之非線性因素加入考慮求得各斷面之曲率(變形)) 113
圖4-2-9第二階段(消除邊界之軸力) 113
圖4-2-10第三階段(消除邊界之彎矩及剪力) 114
圖4-2-11第二階段中軸向應力之求取 114
圖4-2-12混凝土和膠層之間真正的每單位長層間剪力 115
圖4-2-13第三階段的應力修正 115
圖4-3-1 L-C-T2U1之層間應力分布 116
圖4-3-2 L-C-T2U1之加載-位移曲線 116
圖4-3-3貼片尾端之應力狀態 117
圖4-3-4 L-C-T2U1之貼片軸向應力分布 118
圖4-3-5 L-C-T2U1之貼片應變計荷重-應變記錄圖 118
圖4-3-6 L-C-T2U1之應變計位置 119
圖4-3-7 L-C-T2U1之受力形式 119
圖4-4-1參數研究改變Lc對層間應力之影響 120
圖4-4-2參數研究改變dp對層間應力之影響 120
圖4-4-3參數研究改變Ga(Ea)對層間應力之影響 121
圖5-1-1雙層錯開式層合板 169
圖5-1-2雙層錯開式層合板求解層間應力之分析體系 169
圖5-2-1 A部分水平向分力之力平衡圖 170
圖5-2-2 B部分水平向分力之力平衡圖 170
圖5-2-3 B部分第二層貼片之水平向力平衡圖 171
圖5-2-4 B部分第一層貼片之水平向力平衡圖 171
圖5-3-1 A部分之力平衡圖 172
圖5-3-2 B部分之力平衡圖 173
圖5-4-1 la=0.25m、lb=0、lc=1.5m上層之層間應力 174
圖5-4-2 la=0.25m、lb=0、lc=1.5m下層之層間應力 174
圖5-4-3 la=0.10m、lb=0、lc=1.65m上層之層間應力 175
圖5-4-4 la=0.10m、lb=0、lc=1.65m下層之層間應力 175
圖5-4-5雙層錯開式層合板A部分消失僅存B部分之分析體系 176
圖5-4-6 la=0.25m、lb=1.5m之層間應力(僅剩一層) 176
圖5-4-7 la=0.10m、lb=1.65m之層間應力(僅剩一層) 177
圖5-4-8 雙層錯開式層合板B部分消失僅存A部分之分析體系 177
圖5-4-9 A-1之上層貼片之層間應力 178
圖5-4-10 A-1之下層貼片之層間應力 178
圖5-4-11 A-2之上層貼片之層間應力 179
圖5-4-12 A-2之下層貼片之層間應力 179
圖5-4-13 A-3之上層貼片之層間應力 180
圖5-4-14 A-3之下層貼片之層間應力 180
圖5-4-15 B-1之上層貼片之層間應力 181
圖5-4-16 B-1之下層貼片之層間應力 181
圖5-4-17 B-2之上層貼片之層間應力 182
圖5-4-18 B-2之下層貼片之層間應力 182
圖5-4-19 B-3之上層貼片之層間應力 183
圖5-4-20 B-3之下層貼片之層間應力 183
圖5-5-1 lb=0~ lb=40 cm之上層貼片之層間剪應力 184
圖5-5-2 lb=0~ lb=40 cm之下層貼片之層間剪應力 184
圖5-5-3 lb=0~ lb=40 cm之上層貼片之層間正應力 185
圖5-5-4 lb=0~ lb=40 cm之下層貼片之層間正應力 185
圖5-5-5 lb=0~ lb=10 mm之上層貼片之層間剪應力 186
圖5-5-6 lb=0~ lb=10 mm之下層貼片之層間剪應力 186
圖5-5-7 lb=0~ lb=10 mm之上層貼片之層間正應力 187
圖5-5-8 lb=0~ lb=10 mm之下層貼片之層間正應力 187
圖5-5-9錯開量和尾端應力 188
圖5-5-10 改變da1對上層層間應力之影響 188
圖5-5-11改變da1對上層層間應力之影響(0<x<0.05m) 189
圖5-5-12改變da1對上層層間應力之影響(由x=0.15m~ =0.05m,x=0.20m為
A、B之較界處) 189
圖5-5-13改變da1對上層層間應力之影響(由x=0.17m~ =0.02m,x=0.20m為
A、B之較界處) 190
圖5-5-14改變da1對下層層間應力之影響 190
圖5-5-15改變da2對上層層間應力之影響 191
圖5-5-16改變da2對上層層間應力之影響(0<x<0.05m) 191
圖5-5-17改變da2對上層層間應力之影響(由x=0.15m~ =0.05m,x=0.20m為
A、B之較界處) 192
圖5-5-18改變da2對上層層間應力之影響(由x=0.17m~ =0.02m,x=0.20m為
A、B之較界處) 192
圖5-5-19改變da2對下層層間應力之影響 193
圖5-5-20改變dp1對上層層間應力之影響 193
圖5-5-21改變dp1對上層層間應力之影響(0<x<0.05m) 194
圖5-5-22改變dp1對上層層間應力之影響(由x=0.17m~ =0.05m,x=0.20m為
A、B之較界處) 194
圖5-5-23改變dp1對上層層間應力之影響(由x=0.17m~ =0.02m,x=0.20m為
A、B之較界處) 195
圖5-5-24改變Ep1對下層層間應力之影響 195
圖5-5-25改變Ep1對上層層間應力之影響 196
圖5-5-26改變Ep1對上層層間應力之影響(0<x<0.05m) 196
圖5-5-27改變Ep1對上層層間應力之影響(由x=0.15m~ =0.05m,x=0.20m為
A、B之較界處) 197
圖5-5-28改變Ep1對上層層間應力之影響(由x=0.17m~ =0.02m,x=0.20m為
A、B之較界處) 197
圖5-5-29改變Ep1對下層層間應力之影響 198
圖5-5-30改變Ep2對上層層間應力之影響 198
圖5-5-31改變Ep2對上層層間應力之影響(0<x<0.05m) 199
圖5-5-32改變Ep2對上層層間應力之影響(由x=0.15m~ =0.05m,x=0.20m為
A、B之較界處) 199
圖5-5-33改變Ep2對上層層間應力之影響(由x=0.17m~ =0.02m,x=0.20m為
A、B之較界處) 200
圖5-5-34改變Ep2對下層層間應力之影響 200
圖5-5-35斷面性質改變對於上層層間應力的影響(0<x<0.05m) 201
圖5-5-36斷面性質改變對於上層層間應力的影響(0.15<x<0.25m) 201
圖5-5-37斷面性質改變對於下層層間應力的影響 202
圖5-6-1三層錯開式層合版 202
圖5-6-2三層錯開式層合板求解層間應力之分析體系 203
圖5-6-3 C部分之水平向分力之力平衡圖 204
圖5-6-4 C部分第三層貼片之水平向力平衡圖 204
圖5-6-5 C部分第二層貼片之水平向力平衡圖 205
圖5-6-6 C部分第一層貼片之水平向力平衡圖 205
圖5-6-7 C部分之力平衡圖 206
圖6-1建議之貼片補強RC梁之尾端錨定模式 210
參考文獻
1. Xie, M., Hoa, S. V. and Xiao, X. R., “Bonding Steel Reinforced Concrete with Composites,” Journal of Reinforced Plastics and Composites, Vol. 14, pp. 949-964,(1995).
2. 楊逸詠,「建築物龜裂理論與實際」,詹氏書局,民國八十三年。
3. Mindess, S. and Young, J. F., Concrete, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. , (1981).
4. Mehta, P. K., Concrete Structure, Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1986).
5. Schrader, E. K.,”Mistakes, Misconceptions, and Controversial Issues Concerning Concrete and Concrete Repairs,” Concrete International, Vol. 15, pp.48-59, (1992).
6. Jones, R., Swamy, R. N. and Charif, A., “Plate Separation and Anchorage of Reinforced Concrete Beams Strengthened by Epoxy-Bonded Steel Plates,” The Structural Engineering, Vol. 66, pp.85-94, (1988).
7. Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H. and Ghaleb, B. N., ”Shear Repair for Reinforced Concrete by Fiberglass Plate Bonding,” ACI Structural Journal, Vol. 91, pp.458-464, (1994).
8. Mays, G. C., “Engineering Property Requirements for Structural Adhesives,” Proc. Instn. Civ. Engrs, Part 2, pp.485-501, (1988).
9. Lin, T. and Kruger, D., ”Engineering Properties of Epoxy Resins Used as Concrete Adhesives,” ACI Materials Journal, Vol.93, pp. 26-35,(1996).
10. Sharif, A., Al-Sulaimani, G. J., Basunbul, I. A., Baluch, M. H. and Ghaleb, B. N. ,”Strengthening of Initially Loaded Reinforced Concrete Beams Using FRP Plates,” ACI Structural Journal, Vol. 91, pp. 160-168, (1994).
11. Nanni, A.,“Flexural Behavior and Design of RC Members Using FRP Reinforcement,” Journal of Structural Engineering, ASCE, Vol. 117, No. 11, pp.3344-3359, (1993).
12. Chajes, M. J., Thomson, T. A., and Tarantino, B., “Reinforcement of Concrete Structure Using Externally Bonded Composite Materials,” Non-Metallic (FRP) Reinforcements for Concrete Structures, FRPCS-2, pp.23-25, (1995).
13. Sinclair, J. W.,” Effects of Cure Temperature on Epoxy Resin Properties,” J. Adhesion, Vol.38, pp.219-234, (1992).
14. Lin, T. and Kruger, D., ”Engineering Properties of Epoxy Resins Used as Concrete Adhesives,” ACI Materials Journal, Vol.93, pp. 26-35, (1996).
15. Chang, T., Sproat. E. A., Lai, Y. H., Shephard N. E., and Dillard, D. A.,”A Test Method for Accelerated Humidity Conditioning and Estimation of Adhesive Bond Durability,” J. Adhesion, Vol.60, pp.153-162, (1997).
16. Brewis, D. M., ”The Effect of Humidity on the Durability of Aluminium-Epoxide Joints,” Int. J. Adhesion and Adhesives, Vol.10, pp.247-253, (1996).
17. Bowditch, M. R., ”The Durability of Adhesive Joints in the Presence of Water,” Int. J. Adhesion and Adhesives, Vol.16, pp.73-79, (1995).
18. Al-Mandil, M. Y., Khalil, H. S., Baluch M. H. and Azad A.K., “ Performance of Epoxy-Repaired Concrete under Thermal Cycling,” Cement & Concrete Composites, Vol. 12, pp. 47-52, (1990).
19. Armstrong, K.B., ”Effect of Absorbed Water in CFRP Composites on Adhesive Bonding,” Int. J. Adhesion and Adhesives, Vol.16, pp.21-28, (1996).
20. Parker, B. M., ”The Strength of Bonded Carbon Fibre Composite Joints Exposed to High Humidity,” Int. J. Adhesion and Adhesives, Vol.10, pp.187-191, (1990).
21. Wall, J. S., Shrive N. G., ”Factors Affecting Bond between New and Old Concrete,” ACI Materials Journal, Vol.85, pp.117-125, (1989).
22. Abu-Tair, A. I., Rigden, S. R., Burley, E., ”Testing the Bond between Repair Materials and Concrete Substrate,” ACI Materials Journal, Vol.93, pp.553-558, (1996).
23. Matsui. K., ”Effects of Curing Conditions and Test Temperatures on the Strength of Adhesive-Bonded Joints,” Int. J. Adhesion and Adhesives, Vol.10, pp.277-284, (1990).
24. Roberts, T. M., “Approximate Analysis of Shear and Normal Stress Concentrations in the Adhesive Layer of Plated RC Beams,” The Structural Engineer, Vol. 67, pp. 229-233, (1989).
25. Roberts, T. M., ”Theoretical Study of the Behaviour of Reinforced Concrete Beams Strengthened by Externally Bonded Steel Plates,” Proc. Intsn. Civ. Engrs, Part2, pp.651-663, (1989).
26. Roberts, T. M., ”Theoretical Study of the Behaviour of Reinforced Concrete Beams Strengthened by Externally Bonded Steel Plates,” Proc. Intsn. Civ. Engrs, Part2, pp.39-55, (1989).
27. Triantafillou, T. C. and Plevris, N., “Strengthening of RC Beams with Epoxy-Bonded Fiber-Composite Materials,” Materials and Structures, Vol. 25, pp.201-211, (1992).
28. Iketani. J., Jinno, Y., ”Adhesive Properties of a Carbon Fiber Blanket on to the Concrete Surfaces,” 42nd International SAMPE Symposium, pp.109-116, (1997).
29. Plevris, N., Triantafillou, T. C., Veneziano, D.,”Reliability of RC Members Strengthened with CFRP Laminates, ” Journal of Structural Engineering, Vol. 121, pp.1038-1044, (1995).
30. Swamy, R. N., Jones, R, Charif, A, “Shear Adhesion Properties of Epoxy Adhesives,” Journal of Structural Engineering, ASCE, Vol. 114, No. 4, pp.741-755, (1994).
31. 林草英,”碳纖維複合物在鋼筋混凝土結構補強作業之應用”,複合材料貼片修補/補強混凝土結構技術研討會,新竹市,第203-217頁, (1996)。
32. 宋明昌,”含裂縫及損傷之鋼筋混凝土結構的貼片補強” , 碩士論文 ,國立中央大學土木工程研究所碩士論文,中壢,(1996)。
33. 朱國棟、邱佑宗,”談複合材料補強鋼筋混凝土結構件”,工業材料129期。
34. F. Erdogan and K. Arin, “A Sandwich Plate with a Part-through and a Debonding Crack,” Engineering Fracture Mechanics, Vol. 4, pp.449-458, (1972).
35. W. L. Ko, “An Orthotropic Sandwich Plate Containing a Part-through Crack under Mixed Mode Deformation,” Engineering Fracture Mechanics, Vol. 10, pp.15-23, (1978).
36. M. M. Ratwani, “Analysis of Cracked, Adhesively Bonded Laminated Structures,” AIAA Journal, Vol. 17, pp. 988-994, (1979)
37. R. Chandra, M. V. V. Murthy, T. S. Ramamurthy and A. K. Rao, “Analytical Estimation of Stress Intensity Factors in Patched Cracked Plates,” Engineering Fracture Mechanics, Vol. 21, No. 3, pp.479-494, (1985).
38. R. Jones and R. J. Callinan, “Finite Element Analysis of Patched Crack Plates,” Journal of Structural Mechanics, Vol. 7, pp.107-130, (1979).
39. R. Jones and R. J. Callinan, “A Crack Opening Displacement Approach to Crack Patching,” Engineering Fracture Mechanics, Vol. 14, pp.801-806, (1980).
40. R. Jones and R. J. Callinan, “Thermal Considerations in the Patching of Metal Sheets with Composite Overlays,” Journal of Structural Mechanics, Vol. 8, No. 2, pp.143-149, (1980).
41. Quantrill, R. J., Hollaway, L. C., and Thorne, A. M., "Prediction of the maximum plate end stresses of FRP strengthened beams: Part 2." Mag. Concrete Research. , 48(177), pp.343-351, 1996.
42. Quantrill, R. J., Hollaway, L. C., and Thorne, A. M., "Experimental and Analytical investigation of FRP Strengthening Beam Response: Part 1." Mag. Concrete Research. , 48(177), pp.331-342, 1996.
43. Bizindavyi, L. and Neale, K. W., “Transfer Lengths and Bond Strengths For Composites Bonded to Concrete”, Journal of Composites for Construction, Vol. 3, No.4, November, pp. 153-160, (1999).
44. Täljsten, B., “Strengthening of Beams by Plate Bonding,” Journal of Materials in Civil Engineering, Vol. 9,No. 4, November, pp.206-212., (1997).
45. Rabinovitch.O, Y. Frostig, “Nonlinear High Order Analysis of Cracked RC Beams Strengthened with FRP Strips,” Journal of Structural Engineering, Vol. 127, No. 4, April, pp. 381-389,(2001).
46. Aprile Alessandra, Spacone Enrico, LimKatanyu Suchart, "Role of Bond in Beams Strengthened with Steel and FRP Plates", Journal of Structural Engineering, Vol. 127, No. 12, December, pp. 1445-1452,(2001).
47. Adams, R. D., and Peppiatt, N., A., “Effect of Poisson’s Ratio Strains in Adherends on Stresses of an Idealized Lap Joint,” Journal of Strain Analysis, Vol.8, No. 2, pp.234-239, (1973).
48. Renton, W. R., and Vinson, J. R., ”Analysis of Adhesively Bonded Joints Between Panels of Composite Material,” Journal of Applied Mechanics, ASME, Paper No.77-APM-1, (1976).
49. Chang, D.J., and Muki,R., ”Stress Distribution in a Lap Joint under Tension—Shear,” International Journal of Solids and Structures, Vol.10, pp.503-517, (1974).
50. Cornell, R. W., ”Determination of Stresses in Cemented Lap Joints,” Journal of Applied Mechanics, ASME, Vol.75, pp.335-364, (1953).
51. Demarkles, L. R., “Investigation of the use of Rubber Analog in the Study of Stresses Distribution in Riveted and Cemented Joints,” Tech.Note 3413,National Advisory Committee for Aeronautics, Nov. (1955).
52. Lubkin, J. L., “A Theory of Adhesive Scarf Joints,” Journal of Applied Mechanics, ASME, Vol.78, pp. 255-260, (1956).
53. Mylonas, C.,”Stress Distribution in Gluded Joints,” Proceedings of the 7th International Congress of Applied Mechanics, London, England, pp.137-149, (1948).
54. Erdogan, F., “Analysis of Elastic Cover Plates,” Development in Mechanics, Vol.6, pp.817-829, (1971).
55. Volkersen, O., “Resurches sur la theorie des Assamblages Colles”,
Construction Metalligue, Paris, France, No.4, pp.3-13, (1965).
56. Goland, M., and Reissner, E., ”The Stresses in Cemented Joints,” Journal of Applied Mechanics, ASME, Vol .1,No.1, Mar., pp.A.17-A.27, (1944).
57. Yuceoglu, U., and Updike, D. P., ”Stress Analysis of Bonded Plates and Joints, ”Journal of the Engineering Mechanics. Division, ASCE, Vol.106, No.EM1, Proc. Paper 15189, Feb, pp.37-56, (1980).
58. Yuceoglu, U., and Updike, D. P., ”Bending and Shear Deformation Effects in Adhesive Joints,” Proceedings of the fifteenth Annual Meeting of the Society of Engineering Science, Dec., pp.69-74, (1978).
59. Chang, Fo-Van, “Interlaminar Stresses of Laminated Composite Joints With Double Cover Plates”, Journal of Solids & Structures, Vol.26, No.2, pp.165-174, (1990).
60. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw —Hill, Ch3, pp.39, (1970).
61. Tonen Corporation, FORCA TOW SHEET TECHNICAL NOTES, Revision 3.0 1/95, (1995).
62. 何駿傑,”混凝土補強用碳纖維布之黏結性質研究”, 碩士論文 ,國立中央大學土木工程研究所碩士論文,中壢,(1998)。
63. Arduini, Marco, A. D. Tommaso, and A. Nanni, ”Brittle Failure in FRP Plate and Sheet Bonded Beams”, ACI Structural Journal, Vol.94, No.4, July-August, pp. 363-370, (1997).
64. Arduini, Marco, and A. Nanni, ”Parametric Study of Beams with Externally Bonded FRP”, ACI Structural Journal, Vol.94, No.5, September-October, pp.493-501, (1997).
65. Theillout, J. N., "Reinforcements de structures par la technique des tôles collées." Proc., IABSE Symp. of Durability of Structure, pp. 767-772, (1989).
66. Vilnay, O., "The analysis of the reinforced concrete beams strengthened by epoxy bonded steel plates," International Journal of Cement Composite and Lightweight Concrete, 10(2), pp. 73-78, (1988).
67. Wang, Chung-Yue; Feng-Sheng Ling and Ming-Chun Sun, “Retrofitting of Cracked Concrete Structures by Externally Patched Flexible FRP Tow-Sheets I: Experimental Study,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 12, No. 1, pp. 113-122,(2000).
68. Wang, Chung-Yue; Feng-Sheng Ling, “Retrofitting of Cracked Concrete Structures by Externally Patched Flexible FRP Tow-Sheets II: Prediction Models for the Debonding Failure,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 12, No. 2, pp. 277-289,(2000)
69. Ritchie P. A., Thomas D. A., Lu L. W. and Conelly G. M., “External reinforcement of concrete beams using fiber reinforced plastics,” ACI Structure Journal 88, No. 4, July-Aug., pp. 490-500, 1991.
70. Park. R., and, Paulay. T., Reinforced Concrete Structures, John Wiley & Sons Inc., Taipei,Taiwan, Ch2, pp.28, 1975.
71. 胡智超,“鋼筋混凝土梁結合補強及防蝕技術之開發“, 碩士論文 ,國立中央大學土木工程研究所 ,中壢,(2000)。
72. Y. C. Wang, and Restrepo. J. I., 2002, "Response of RC T-Beams strengthened for flexural with staggered CFRP plates", Journal of Composites for Construction, Vol. 5, No. 3, August, pp. 188-199.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔