跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉秀雲
研究生(外文):Yeh Hsiu-yun
論文名稱:高分子固態電解質改進高分子發光二極體之光學特性研究
論文名稱(外文):Enhancement of PLED Optical Properties by Solid Polymer Electrolyte
指導教授:諸柏仁
指導教授(外文):Peter P. Chu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:有機發光二極體高分子發光材料固態核磁共振電致發光電池
外文關鍵詞:PhotoluminescencePLEDOrganic light emitting diodeSolid state NMRLEClight electrochemical cell
相關次數:
  • 被引用被引用:8
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:1
高分子發光二極體(PLED)是共軛高分子近年來最具有工業發展潛力之應用之一。比較小分子發光二極體(OLED)具有製程簡單、低成本、可大面積化、可做曲饒性面板、輕薄化等優點。但目前遇到了操作壽命短、操作電壓高、量子效率低、電極介面接和差等問題。本研究探討利用鋰鹽(dopant)與高分子固態電解質(PEO)混摻入發光材料MEHPPV之方法,發現可以有效降低PLED工作電壓。鋰鹽經由電解質柔軟鏈鍛順利進入MEHPPV,並且效能比未添加高分子固態電解質(僅添加鋰鹽或純MEHPPV)之樣品具有較低之操作電壓,較高極子數目,而亮度也相當。
本文經由7Li NMR觀察混摻樣品之離子運動性,並了解鋰離子之分布狀況。研究發現MEHPPV/(PEO+Li) =60/40相容性最好有較多的鋰離子進入發光材料主結構因其具有較低活化能,在結構上鋰鹽有效的經由PEO的鏈鍛doping進入MEHPPV並且doping於陰電性較高之烷氧基與苯環之間,生成極子(polaron)與雙極子(bipolaron),因此降低能帶差,並增加共軛長度,使得操作電壓因此降低了將近2V。導電度相較於未添加PEO者,增加了101~105,並且因為共軛長度經由PEO的添加而增長,UV及PL發現了光譜往紅位移方向移動將近10nm。在放光效率中以MEHPPV/(PEO+Li)=50/50具有最高螢光強度者具有最佳螢光效率,高於50%MEHPPV之樣品因PEO鏈段的捲繞反而降低了螢光性質。
本研究對於鋰離子的配位,運動性,活化能及表面紋理對於光性元件之關連性作探討,希望對將來高分子發光二極體之改質有個參考依據。
Polymer light-emitting diode (PLED), entails problems such as short lift time, low quantum yield, high running voltage and insufficient interface adhesion between electrode and light emitting materials. In current study we explore a tunable doping by composite a polymer electrolyte, with the light emitting materials, MEHPPV. The study showed that the flexible PEO’s chain motion facilitated the ion doping with MEHPPV, which are otherwise immiscible with ion salt. As a result of the modification, it enhances electron and hole recombination, lowered the work potential and improved the quantum efficiency.
The dynamics and local structures of lithium ion in the electrolyte composite PLED polymer composite is well illustrated by 7Li NMR. The best miscibility is achieved with MEHPPV/(PEO+Li)=60/40 wt% with the highest amount of lithium doped in MEHPPV. The doping forms polaron and bipolaron and decreased energy band gap, and successively lowered the work potential of about 2V with the conductivity increases 101~105 fold. UV and PL spectra indicated increasing conjugated length resulting form the more effective doping. Surface analyses from AFM and activation energy (Ea) measured from NMR line width provided detailed understanding of the coordination structures and exchange of lithium between MEHPPV and PEO, which contributes to the optical properties. The approach serves as a guidance to improve PLED optical and physical properties with tunable doing by polymer electrolytes.
目 錄
目錄…………………………………………………………………….……I表目錄………………………………………………...…………………….V圖目錄…………………………………………………….………………VII中文摘要…………………………………………………………….....ⅩIV英文摘要………………………………………………………………ⅩV
第一章 緒論………………………………………………………….……..1
1-1前言………………………………….……………………………….….1
1-2有機共軛導電高分子之發展…….….....……………………………….1
1-3有機共軛高分子的電子狀態…………….……….…………………….2
1-3-1 古典半導體之帶結構理論理論...………...……………..…………..2
1-3-2 共軛高分子之帶傳導理論…………..…...………………..…...3
1-3-3 Doping and Dopants...……………………….…………………….4
1-4 發光理論……………..……..…………………………………………..6
1-4-1 EL與PL發光原理………………………………………….………...6
1-4-2 影響螢光之因素..…………..………………………………………9
1-5 本文架構與目的…..……………………..……………………………11
1-6 第一章參考文獻………..……………………………………………..18
第二章 文獻回顧………………………………………………………….20
2-1 發光材料:PPV系及MEHPPV……………………………………….20
2-1-1 MEHPPV之發展近況………………...……………………………..20
2-1-2 MEHPPV高分子發光二極體……...………………………………..21
2-1-3 MEHPPV高分子發光二極體之改質-結構上………..…………….21
2-1-4 MEHPPV之改質-混摻型發光元件…………………………..…….23
2-2 有激發光二極體之發展.………………..…………………………….26
2-1-1 光色的發展…………………………..………………….………….27
2-2-2 效率及亮度改進的發展…………..…………………….………….28
2-2-3 電極修飾……………………………………………………….….29
2-3 文獻分析…………..………………..…………………………………30
2-4第二章參考文獻……..………………….……………………………..32
第三章 實驗及其技術原理……………………………………………….36
3-1 樣品製備…………..………..…………………………………………36
3-1-1 MEHPPV合成實驗過程…………………..………………...……...36
3-1-1-1單體合成………………………..…………………………….…...36
3-1-1-2 聚合反應………………..………………………………………...38
3-1-1-3 單體與高分子之鑑定………………..…………………………...38
3-1-2 高分子溶液的製備…………………..………………….………….41
3-1-3 元件製作……………………..……………………………………..42
3-1-3-1 基材的選擇與清潔…………………..…………………………...42
3-1-3-2 高分子的塗膜…………………..………………………………...43
3-1-2-3 電極選擇與蒸鍍……………….……………………….…..43
3-1-4 實驗藥品…………..…………………………………………….….44
3-2 分析儀器應用理論及操作程序…………..…………………..………47
3-2-1 結構分析………………..…………………………………………..47
3-2-1-1 傅立葉式紅外線吸收光譜儀(FT-IR)………………..…………..47
3-2-1-2 固態核磁共振儀(Solid state NMR)………………..………….....48
3-2-1-3 微差式掃描熱卡計(DSC)…………………………..…………....57
3-2-1-4 熱重分析儀(TGA)………………………………..……………....59
3-2-2 表面紋理分析……………………………………..………………..60
3-2-2-1掃描式電子顯微鏡(SEM)………………………...……………….60
3-2-2-2 原子力學電子顯微鏡(AFM)…………………..…………………61
3-2-3 電性分析…………………………………………………………..62
3-2-3-1 交流阻抗儀(AC Impendence)……………..……………………..62
3-2-4 光性分析…………………………………..………………………..65
3-2-4-1 紫外光-可見光吸收光譜儀(UV-Vis)…………………...………..65
3-2-4-2 光激發光螢光光譜(PL)與電激發光光譜(EL)..……………..…..65
3-2-5 元件性質分析……………………..……………………………......66
3-2-5-1 電特性分析儀………………..……………………………...……66
3-3 第三章參考文獻…………………………………………………..77
第四章 結果與討論……………………………………………………….80
4-1 材料結構特性之分析…...……..……...………………………………83
4-1-1熱重損失分析………………...…………………...………..………..83
4-1-2 微差掃描卡計之研究分析………………..……..…………....……86
4-1-3 傅立葉紅外線光譜儀之研究分析………..………………………..92
4-1-4 固態核磁共振光譜分析………………..………………………....104
4-1-4-1 CP/MAS NMR光譜…………….……………..………………....104
4-1-4-2 7Li NMR光譜…………………………………..………………..108
4-1-4-3 Li動態動力學-T1及T2 NMR…………………..………………..116
4-2 材料電性特性之分析………………………………………………..134
4-2-1 Li動態動力學-T1及T2 NMR………………………………………134
4-3 材料表面結構分析…………………..………………...…………….143
4-3-1 掃描式電子顯微鏡………………………………………………..143
4-3-2原子力學顯微鏡…………………………………………………....151
4-4 光學特性分析…………………………..……………………………155
4-4-1紫外光-可見光光譜分析…………….…………………………….155
4-4-2螢光光譜分析………………………………………………..……..161
4-5元件特性分析………………………………………………………...166
4-6第四章參考文獻………...………………………………………...….170
第五章 總結……………………………………………………………...174
表目錄
Table 1-1 Typical maximum doping levels.………....………………………6
Table 1-2 The influence of substituents on fluorescence…..………………10
Table 2-1 Polymer LED and LEC…………………...……………………..25
Table 3-1 NMR Chemical shift of monomers and MEHPPV………..……40
Table 3-2 Assignment of the peaks in IR spectrum of MEHPPV………….41
Table 3-3 Weight and mole ratios of composite electrolytes….…………...42
Table 3-4 Chemical structure and supplier in this investigate……………..44
Table 4-1 The symbolize of samples that contents of composition in blending system…………………………………………………82
Table 4-1-2-1 PEOχ%、ΔH、Tm of MEHPPV Blending PEO/LiClO4 System, which have different percentage…..…….………...……89
Table 4-1-3-1 PEO結晶與非結晶相及摻雜LiClO4之紅外線光譜吸收峰位置表………………………………………………………………98
Table 4-1-3-2 純MEHPPV、PEO、LiClO4紅外線光譜主要吸收峰位置表…………………………………………………………………99
Table 4-1-4-1 TCH and T1ρ of different carbon from pure MEHPPV…….106
Table 4-1-4-2 The △1/2 in MEHPPV/[PEO/LiClO4(10%)] system at 238K…………………………………………………………….112
Table 4-1-4-3 The active energy of lithium in every component of every different blending samples…………………………...…………115
Table 4-2-1-1 The conductivity and PEO crystallinity of blend system….139
Table 4-2-1-1 Conductivity and Activation Energy(eV) of Li ion conduction in 10%LiClO4 system…………………….…………………….140
Table4-3-2-1 The morphology of blending sample MEHPPV/PEO/Li(10%) spinning coating on ITO glass obtained from AFM………..….152
圖目錄
Figure 1-1 conjugated structure of 1,3-butene……………………………..13
Figure 1-2 The representation of energy levels of π MOs with increasing size of the molecules for PA, (CH)n…………………………....13
Figure 1-3 Band gap of insulator,semiconductor and metal………………14
Figure 1-4 Actual structures of polarons/bipolarons in Poly(p-phenylene)..14
Figure 1-5 Band structure evolution for Poly(pyrrole)(P(Py))……….…….15
Figure 1-6 A schematic summary of the methods of doping and related chemical and physical phenomena ………………….…………15
Figure 1-7 Photoluminescence(PL) Theory………………………………..16
Figure 1-8 Electroluminescene(EL) Theory………………………………..16
Figure 1-9 Contrast between EL and PL…………………………………17
Figure 1-10 EL Self-absorption of PPV and UV、PL spectra of PPV……..17
Figure 2-1 Flexibility polymer light emitting diode ……………………….31
Figure 2-2 Schematic diagrams of the electrochemical processes in a solid -state light-emitting electrochemical cell………...…………….31
Figure 2-3 interpenetrating network, IPN………………….………………31
Figure 3-1 1H liquid state NMR of monomer of MEHPPV………………..68
Figure 3-2 1H liquid state NMR of MEHPPV…………………………...…68
Figure 3-3 13C liquid state NMR of 1-Methoxy-4-(2-Ethyl-hexyloxy) Benzene………………………………...………………………69
Figure 3-4:13C liquid state NMR of 2,5-bis(Bromomethyl)-1-Methoxy-4-(2- Ethyl-hexyloxy) Benzene………….…………………………...70
Figure 3-5 13C Solid-state NMR Spectra of poly[2-Methoxy-5-(2’-Ethyl- hexyloxy)-p-(phenylene vinlene)](MEHPPV) ………………...71
Figure 3-6 IR spectra of 2,5-bis(Bromomethy)- 1-Methoxy-4-(2-Ethyl— hexyloxy)Benzene and poly[2-Methoxy-5-(2’-Ethyl-hexyloxy)- p-(phenylene vinlene)] (MEHPPV) …………………………...72
Figure 3-7 MEHPPV sample spin coating on ITO glass…………………..73
Figure 3-8 single layer polymer light emitting diode……………………....73
Figure 3-9 Situation of sample and NMR roter…………………………….73
Figure 3-10 the model of Bozeman energy ,and single is recovery by exponent………………………………………………………..74
Figure 3-11 Inversion-Recovery pluse plot………………………….……..74
Figure 3-12 Relaxation time,T1 get from relation of intensity and correlation time……………………………………………………………..74
Figure 3-13 Schematic structure of AFM………………………………….75
Figure 3-14 The formation of fluorescence and phosphorescence of molecules……………………………………………………….76
Figure 3-15 Relaxation constant TCH and T1ρ from different contact time and intensity…...……………………………………………….76
Figure 4-1本論文研究架構之流程圖…………………………………….81
Figure 4-1-1-1 TGA thermogram of MEHPPV and PEO………………….84
Figure 4-1-1-2 TGA thermogram of various percentages of MEHPPV blending samples, which have PEO and 10%LiClO4 of PEO….84
Figure 4-1-1-3 TGA thermogram of various percentages of MEHPPV blending samples, which have PEO and 20%LiClO4 of PEO….85
Figure 4-1-2-1 DSC thermogram of various percentages of MEHPPV blending sample, which have PEO and 10%LiClO4 of PEO…..90
Figure 4-1-2-2 DSC thermogram of various percentages of MEHPPV blending sample, which have PEO and 20%LiClO4 of PEO…..90
Figure 4-1-2-3 DSC thermogram of pure MEHPPV………………………90
Figure 4-1-3-1 The IR spectra of different ratios of PEO and LiClO4……100
Figure 4-1-3-2 IR spectra of pure LiClO4 and PEO………………………101
Figure 4-1-3-3 IR spectra of MEHPPV, MEHPPV/LiClO4 MEHPPV/PEO/Li…………………………………………….101
Figure 4-1-3-4 IR Spectra of various percentages of MEHPPV blending samples, which have PEO and 10%LiClO4 of PEO…………..102
Figure 4-1-3-5 IR Spectra of various percentages of MEHPPV blending samples, which have PEO and 20%LiClO4 of PEO………..…103
Figure 4-1-4-1 Pure MEHPPV at Different Contact time from solid-state 300 Hz NMR spectra…………...………………………………….119
Figure 4-1-4-2 Different situation carbon of Pure MEHPPV in different contact time……...………...………………………………….120
Figure 4-1-4-3 13C NMR spectra in various percentage MEHPPV/(PEO+Li+)………………………………………...121
Figure 4-1-4-4 7Li NMR Spectra of 50 % MEHPPV at various spinning rate (500~4500 Hz). (obtained by 300 MHz solid NMR)…………122
Figure 4-1-4-5 7Li NMR Spectra of 5% MEHPPV at various temperature (208K~348K).…...………...………………………………….123
Figure 4-1-4-6 7Li NMR Spectra of 20% MEHPPV at various temperature (208K~348K).…...………...………………………………….124
Figure 4-1-4-7 7Li NMR Spectra of 40% MEHPPV at various temperature (208K~348K).…...………...………………………………….125
Figure 4-1-4-8 7Li NMR Spectra of 50% MEHPPV at various temperature (208K~348K).…...………...………………………………….126
Figure 4-1-4-9 7Li NMR Spectra of 60% MEHPPV at various temperature (208K~348K).…...………...………………………………….127
Figure 4-1-4-10 7Li NMR Spectra of 80% MEHPPV at various temperature (208K~348K).…...………...………………………………….128
Figure 4-1-4-11 7Li NMR Spectra of MEHPPV/LiClO4 at various temperature (208K~348K)……………………………………129
Figure 4-1-4-12 The Li+ relative weight(%)add to polymer or forming ion pair of blending sample from 7Li NMR Spectra……………..130Figure 4-1-4-13 The △1/2 (full width of a half maximum)in various MEHPPV content in MEHPPV/[PEO/LiClO4(10%)] system from 7Li NMR Spectra……………………………………….131
Figure 4-1-4-14 Variable temperature T1 for different MEFPPV content blending sample...………...……………………..…………….132
Figure 4-1-4-15 The schemematic diagram of the blended electrolyte...…133
Figure 4-2-1-1 Conductivity vs. inverse temperature in the rang from 25℃ to 75 ℃ for 10%LiClO4 system……………………………..141
Figure 4-2-1-2 Conductivity of rising and dropping temperature processes………………………………………………………142
Figure 4-2-1-3 Conductivity of different salt blending 60%MEHPPV/40% [PEO+Salt(10%)] system…..…………………………………142
Figure 4-3-1-1 SEM photo of 10p-50% blending sample film ×1000(a) dissolve it by heating and prepare film in dry box;(b) dissolve it by heating and prepare film in the room;(c) dissolve it by room temperature and prepare film in dry box;(d) dissolve it by room temperature and prepare film in the room…………………….146
Figure 4-3-1-2 SEM photo of 60%MEHPPV/40%(PEO/LiClO4(10%)) blending sample film ×1000 prepare from using different solvents(a)toluene;(b)cyclohexane;(c)Chloroform……..…….147
Figure 4-3-1-3 SEM photo of blending sample film×1000(a)Pure MEHPPV;(b)MEHPPV+LiClO4;(c)MEHPPV+PEO………...148
Figure 4-3-1-4 SEM photo of blending sample film×1000(a)5%(b)20% (c )40%;(d )50%;(e )60%;(f )80% of MEHPPV content in MEHPPV/(PEO/LiClO4(10%))……………………………….149
Figure 4-3-1-5 SEM photo of blending sample film ×1000 (a)5% ;(b) 20% ;(c )40% ; (d )50% ; (e )60% ; (f )80% of MEHPPV content in MEHPPV/(PEO/LiClO4(20%))…………………...150
Figure 4-3-2-1 AFM Micrographs of different blending sample on ITO glass (25μm ×25μm) (a)ITO glass after cleaning;(b)MEHPPV+Li(c) 20% MEHPPV content in MEHPPV/[PEO/LiClO4 (10%)]…..153
Figure 4-3-2-2 AFM Micrographs of different blending sample on ITO glass (25μm ×25μm) (d)40%;(d)60%;(f )80% MEHPPV content in MEHPPV/[PEO/LiClO4(10%)]……………………………....154
Figure 4-4-1-1 UV-Vis spectra of 40%、60%、80% MEHPPV in MEHPPV/ PEO/LiClO4(10%) system using different solvent (chloroform or toluene)………………………………………………………..159
Figure 4-4-1-2 UV-Vis spectra of Pure MEHPPV, MEHPPV/PEO,MEHPPV /Li and MEHPPV/PEO/LiClO4(10%)…………….………..159
Figure 4-4-1-3 UV spectra of various MEHPPV/[PEO/Li+(10%)] blending sample and Pure MEHPPV……………………………...…160
Figure 4-4-1-4 UV spectra of 60% MEHPPV add PEO and different salt.160
Figure 4-4-2-1 PL spectra of 40%、60%、80% MEHPPV contents in MEHPPV/PEO/LiClO4(10%) system use different solvent (chloroform or toluene)…………………………………….164
Figure 4-4-2-2 PL spectra of Pure MEHPPV, MEHPPV/PEO, MEHPPV/Li and MEHPPV/PEO/LiClO4(10%)………………………….164
Figure 4-4-2-3 PL spectra of various MEHPPV/[PEO/Li+(10%)] blending sample and Pure MEHPPV…………………………...……165
Figure 4-4-2-4 PL spectra of 60% MEHPPV add PEO and different salt (Mg(ClO4)2、LiClO4、LiPF6)…..………………………….165
Figure 4-5-1 IV curve of Pure MEHPPV and 20%,40%,60%,80%MEHPPV content in MEHPPV/PEO/Li (10%) blending sample…..…168
Figure 4-5-2 Brightness and apply voltage of Pure MEHPPV and 60%,80% MEHPPV content in MEHPPV/PEO/Li (10%) blending sample……………………………………………………....168
第一章參考文獻
1A. Angeli, Gazz. Chim. Ital. 1916, 46,Ⅱ, 279.
2A. F.Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem.Commun,1979,635.
3蕭如娟,科儀新知,1988, 9,6, 65.
4A. J.Heeger, D.Braun, Appl.Phys. Lett. 1990,58,1982.
5J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990,347, 539
6K. Susan, E. S.VanderKam., J. S.Gawalt, A. B.Bocarsly, Langmuir,1999, 15, 6598
7J. Gmeiner, S. Karg, M. Meier, W. Rieβ,P. Strohriegl, M. Schwoerer, Acta. Polym.,1993,44,201
8G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357, 477
9N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holms, Nature 1993, 356, 628
10J. L. Brodas, B. Themans and J. M. Andre, Synth Met., 1984, 9, 265
11A. O. Patil, A. J. Heeger, and F. Wdl, Chem. Rev., 1988, 88, 183
12M. Boman and D. Stafstrom, Synth. Met. 1993, 55-57, 4614
13J. C. Scott, P. Pfluger, M. T. Krounbi and G. B. Street, Physical Review B, 1983, 244, 2140
14Prasanna Chandrasekhar Conducting Polymers:Fundamentals and Applications A Practical Approach,1999,p.35Kluwer Academic Publishers
15W. R. Salanweck, I. Lund Ström and B. Ranby “Conjugated Polymers and Related Materials The Interconnection of Chemical and Electronic Structure” 1993
16A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burroughes, R. H. Friend, N. C. Greenham, R. W. Jackson, A.Kraft, J. H. F. Martens, K. Pichler and I. D. W. Samuel, Synth. Met., 1993,55-57,4031
17D. R. Baigent, N. C. Greenham,J. Gruner, R. N. Marks, R. H. Friend, D. C. Moratti and A. B. Homlens Synth. Met., 1994, 67,3
18Y. Yang, E. Westerweele, C. Zhang, P. Smith and A. J. Heeger, J. Appl. Phys. 77,694(1995)
19Q. Pei, G. Yu, C. Zhang and A. J. Heeger, Science, 1995,269,1086
20S. Saito, E. Aminaka, T. Tsutsui and M. Era, J. Lumin., 1994, 60, 902
21G. E. Johson, K. M. McGrane and M. Stolka, Pure Appl. Chem.,1995 67, 1975
22C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett., 1995, 66, 2679
23T. Tsutsui, E. I. Aminaka, Y. Fujita, Y.Hamada and S. Saito, Synth. Met., 1993, 57, 4157
24G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 1992,357,477
25施敏,張俊彥,半導體元件物理與製作技術,85年3月,高立書局再版
2-4、第二章 參考文獻
1.R. N. McDonald, T. W. Cambell, J. Am. Chem .Soc.,1960,82,4669
2.K. D. Gourley, C. P. Lilllyla, J. R. Reynolds, J. C. W. Chien, Macromolecules, 1984,17,1025
3.K. L. Brandon, P. G. Bentley, D. D. C. Bradley,D. A. Dunmur, Synth. Met. 1997,91,305
4.Y. Sonoda, Y. Suzuki, E. Van Keuren,H. Matsuda, Macromolecules,1996,29,288
5.R. A. Weeling, R. G. Zimmermann, U.S. Patent 3, 1968, 401, 152
6.R. A. Weeling,J. Polym. Symp.1985,72,55
7.D, Braun and A. J. Heeger,Appl. Phys. Lett.,1991,58,1982
8.S. Doi, M. Kuwabara, T. Noguchi and Ohnishi, Synth. Met. 1993,55-57,3301
9.Y. Yang and Q. Pei, J. Appl. Phys. 1995,77,4807
10.Y. Liu, M. S. Liu, X. -C. Li and A. K. -Y. Jen, Chem. Mater. 1998,10,3301
11.H. –K. Shim, H. –J. Kim, T. Shn, I. –N. Kang and T. Zyung, Synth. Met. 1997,91,289
12.P. K. H. Ho, M. Granström, R. H. Friend and Greenham, Adv. Mater.1998,10,769
13.Q. Pei and F. Klavetter, U.S. Patent Application 08/268763(28 June 1994)
14.Q. Pei, G. Yu, C. Zhang, Y. Yang,A. J. Heeger ; Science 1995,269,1086
15.Q. Pei, Y. Yang, Synth. Met.1996,80,131
16.Q. Pei, Y. Yang,G. Yu, C. Zhang, J. Am. Chem. Soc. 1996,118,3922
17.Y. Cao, G. Yu, and A. J. Heeger; Appl. Phys. Lett. 1996,68,3218
18.Q. Pei, Y. Yang; Appl. Phys. Lett. 1996,68,2708
19.L. Holzer, F. P. Wenzl ; Synth. Met. 1999,102,1022
20.Q. Pei, Y. Yang, G. Yu, Y. Cao, A. J. Heeger, Synth. Met. 1997,85,1229
21. L.F.Santos., L.M. Carvalho, F. E. G. Guimarães, D. Goncalces and R. M. Faria, Synth. Met. 1997, 121,1697
22.S.C. Chang, Y. Li, Y. Yang, J. Phys. Chem., 2001,04,11650
23.D. Braun and A. J. Heger, Appl. Phy. Lett., 1991,58,1982
24.G. Gustafsson, Y. Cao, . M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature,1992,357,477
25.J. Salbeck and Ber. Bunsenges. Phys. Chem., 1996,100,1667
26.http://www.universaldisplay.com/
27.施敏,張俊彥,半導體元件物理與製作技術,85年3月,高立書局再版
28.M. Yamaguchi, T. Nagatomo, The Solid Filns,2000,363,21
29.C. S. Chao, W. T. Whang, K. R. Chuang, Journal of Polymer Research,2001,89,3250
30.N. C. Greenham, S. C., S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holms, Nature,1993,365,628
31.I. H. Campbell, T. W. Hagler, D. L. Smit, J. P. Friends,Phys. Rev. Lett 1996,76,1990
32.U. Mitschke and P. Bäuerle Journal of Materials Feature Article Chemistry,2000,10,1471
33.S. C. Moratti, R. Cervini, A. B. Homes,D. R. Baigent, R. H. Friend, N. C. Greenham, J. Hamer, Synth. Met., 1995,71,2117
34.D. R. Baigent, P. J. Hamer, R. H. Friend, S. C. Morattu A. B. Holmes, Synth. Met., 1995,71,2175
35.S. T. Kim, D.-H. Hwang, X. C. Li, J. Gruner, R. H. Friend, A. B. Holmes, H. K. Shim, Adv. Mater,1996,12,979
36.Z. Peng and M. E. Gavin, Chem. Mater, 1998,10,1785
37.Y. Kim, S. Kwon, D. Yoo, M. Ruber, M. S. Wrighton, Chem. Mater, 1997,9,2699
38.D. R. Baigent, R. H. Friend, J. K. Lee, R. R. Schrock, Synth. Met., 1995,71,2171
39.H. K. Shim, I. N. Kang, M. S. Jang, T. Zyung, S. D. Jung,Macromolecules,1997,30,7749
40.A. R. Brown, D. D. C. Bradley, R. H. Friend, Chem. Phy. Phys. Lett.,1992,200,46
41.X. Zhang and S. A. Jenekhe, Macromolecules, 2000, 33, 2069
42.A. Bernaaose,M. Conte, P. Vouauzx, J. Chim. Phys.1953,50,64
43.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys,1968, 38, 2042
44.C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett.,1987,51,913
45.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990 ,347 ,539
46.C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1989,55,1489
47.C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1990,57,531
48.C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater. 1994,23,453
49.M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, J. Appl. Phys 1995,34,1546
50.Y, Cao, I. D. Paker, G. Yu, C. Zhang, A. J. Heeger, Nature, 1999,397,414
51.F. Cacialli, X.-C. Li, R. H. Friend, S. C. Moratti, A. B. Holmes, Synth. Met.,1995,75,161
52.T. J. Boyd, Y. Geerts, j. –K. Lee, D. E. Fog, G. G. Lavoie, R. R. Schrock, M. F. Ruber, Macromolecules, 1997 30,3553
53.Z. Bao, Z. Peng, M. E. Gavin, E. A. Chandross, Chem. Mater.,1998,10,1201
54.A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Avd. Mater. 1997,9,1174
55.Z. Peng, Z. Bao, M. E. Galvin, Avd. Mater. 1998,10,680
56. S.Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules,1999,32,1482
57.T. J.Gardner , C. Daniel,; M. S. Wrighton, J. Am. Chem. Soc. 1995, 117,6927
58.S. K. VanderKam,; G. J. Schwartz,; A. B. Bocarsly, Langmuir 1999, 15,6598
59.Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, J. Appl. Phys, 1995,77,694
3-3、第三章參考文獻
1C. J. Neef , J. P. Ferraris* Macromolecule 2000, 33, 2311-2314
2Z. -K. Chen, J. –Q. Pan, Y. Xiao, N. H. S. Lee, S. -J.Chua, W. Huang* Thin Solid Films 2000, 363,98-101
3B. R. Hsieh, Y. Y., A. C.VanLaeken, and H. Lee, Macromolecule 1977, 30, 8094-8095
4Book:Infrared Characteristic Group Frequencies,G. Socrates,1980
5K. F. Voss, C. M. Foster, L. smiowitx, D. Mihalovin, S. Askari, G. Srdanov, Z. Ni, S. Shi, A. J. Heeger and F. Wuld, Phys. Rev. B 1991, 43, 5109
6Pavia Lampman Kriz Introduction to Spectroscopy 4th Sauders College Publishing 1976
7游瑞成 有機光譜學 科學大展圖書徐氏基金會1992
8Sukhanova, T. E., Urban, J.…., Journal of Materials Science, 1995, 30, 2201-2214.
9Z. Xiaoqing, S. Masahiko, T. Akinobu, Polymer, 1994, 35, 4280-4286.
10Z. Xiaoqing, S. David H., Macromolecules, 1994, 27, 4919-4926.
11K. Erdmann, W. Czerwinski, B. C. Gerstein, and M. Pruski, Journal of Polymer Science: Part B: Polymer Physics, 1994, 32, 1961-1968.
12K. J. McGrath, K. L. Ngai, C. M. Roland, Macromolecules, 1995, 28, 2825-2830.
13Z. Xiaoqing, K. Takegoshi and H. Kunio, Polymer, 1992, 33, 712-717.
14F. Maria, T. Van-Tan and S. Mark E., Polymer, 1994, 35, 1593-1600.
15J. Z. Hu, X. Wu, et. al., Solid State Nuclear Magnetic Resonance, 1996, 6, 187-196.
16鄒德里, 科儀新知, 1994, 6, 88-96.
17Almeria, N.; Alexandra, S. Macromolecules, 1989, 22, 4426-4430.
18E. Fukushima, S. B. W.Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addison-Wesley: Reading, 1981.
19R. N. Ibbett, “NMR Spectroscopy of Polymers Blackie Academic & Professional ”, New York, 1993.
20張文宗,台灣大學化學研究所碩士論文,86年1月
21劉上宏, 中央大學化學研究所碩士論文,85年6月
22Lon J.Mathias. “Solid state NMR of polymer”. Plenum press, New York.1988
23Jack L. Koenig. “Spectroscopy of Polymers”. ACS. Wshington, DC.1992
24P. P. Chu; Z. –P. He Polymer 2001, 42, 4743
25J. F. Rabek, “Experimental Methods in Polymer Chemistry ”, New York, (1980).
26P. R. Couchman and F. E. Karasz, Polymer, 38 (1997), 459-462.
27L. A. Utracki, Advanced Polymer Technology, 5 (1985), 33.
28J. M. Pochan, C. L. Beatty and D. F. Pochan, Polymer, 20 (1979), 879.
29M. Gordon and J. S. Taylor, Journal of Applied Chemistry, 2 (1952), 493.
30T. G. Fox, Journal of Applied Bulletin American Physical Society, 1 (1956), 123.
31陳力俊,”電子顯微鏡學發展沿革與未來趨勢”,科儀新知,86年10月,第十九卷第二期.
32J G Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
33 “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
34林鶴南,李龍正,劉克迅,”原子力學顯微技術極其在半導體之應用”,科儀新知,84年12月,第十七卷第三期,p.29
35郭騰欽 國立清華大學化學工程研究所碩士論文,88年6月
4-6、第四章參考文獻
1J.S.W.Chien, polyacetyalene: Chemistry ,Physical, and material Science, Academic Press, Orlando,1984
2蔡麗娟, 中央大學化學研究所碩士論文,90年6月
3黃雅鈴, 中央大學化學研究所碩士論文,90年6月
4J. Li, L. M. Pratt, and I. M. Khan, J. Poly. Sc. Part A: Polymer Chemistry, 1995, 33, 657
5 J. Li and I. M. Khan, Macromolecules, 1993, 26, 4544
6方惠芬,中央大學化學研究所碩士論文,87年6月,109-116頁。
7C. Berthier, W. Gorecki, M. B. Armand, et. al., Solid State Ionics, 1983, 11, 91
8Lee Tae-Woo Chem. Mater. 2001,13, 2217
9M. A. Dissanayake and R. Frech, Macromolecules, 1995, 28, 5312
10郎長齡,中央大學化學研究所碩士論文,86年6月
11Silverstein R. M., Webster F. X., Spectrometric Identification of Organic, 1963.
12M. A. Dissanayake and R. Frech, Macromolecules, 1995, 28, 5312-5319.
13H. D. Wu, P. P. Chu, C.C.M. MA, F. C. Chang, Macromolecules 1999, 32, 3097
14徐若韶,中央大學化學研究所碩士論文,90年6月
15J. Li, L. M. Pratt, and I. M. Khan, J. Poly. Sc.: Part A: Polymer Chemistry, 1995, 33, 657.
16Cheng T. T., Wen T. C., Journal of Electroanalytical Chemistry, 1998,459,99
17Susan K. VanderKam, Ellen S. Gawalt, Jeffrey Schwartz, and Andrew B. Bocarsly, Langmuir 1999,15,6598
18A. Johansson, A. Wendsjö and J. Tegenfeldt, Electrochimica Acta, 1992,37, 1487.
19A. Johansson and J. Tegenfeldt, J. Chem. Phys., 1996, 104, 5317.
20Binesh Nader and S. V. Bhat, J. Polym. Sci.: Part B, Polym. Phys., 1998, 36, 1201
21G. S. Fulcher, J. Am. Chem. Soc., 1925, 8, 339
22S. H. Chung, K. R. Jeffrey and J. R. Stevenson, J. Chem. Phys., 1991, 94.
23P. P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, and C. L. Lang Macromolecules 1999, 32, 4738.
24任修平,中央大學化學研究所碩士論文,88年5月
25A. Abragam, "The Principles of Nuclear Magnetism ", 1961, Clarendon, Oxford.
26Q. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, J. Am. Chem. Soc., 1996,118,3922
27Y Cao, G. Yu, and A. J. Heeger, Appl. Phy. Lett., 1996,68,3218
28C. Yin, Y.-Z. Yang, and S.-y. Zhang Chem. Mater,2000, 12, 1853
29P. P. Chu, Z. –P. He Polymer, 2001, 42, 4743
30Thomas C. Farrar "Introduction to Pulse NMR Spectroscopy" 1989
31Blombergen N, Purcell EM, Pound RV. Phy. Rev., 1948,73,676
32Kakihana M., Schantz S,Torell LM. J Chem Phys., 1990,92,6271
33劉上宏,中央大學化學研究所碩士論文,85年6月
34D. Skoog, F. J. Holler, T. A. Niteman “Principle of Instrumental Analysis 5th ”, 1997,Saunder College Publishing
35G. Dufresne, J. Bouchard, M. Bellerere, G. Durocher, L. Leclerc, Macromolecule,2000,33,8252
36P. Chandrasekhar “Conducting Polymers, Fundamentals and Applications A Practical Approach” 1999,p.35 Kliweer Academic Publishers
37Lee Tae-Woo Chem. Mater., 2001, 13, 2217
38Q. Pei, G. Yu, C. Zhang,Y. Yang, and A. J. Heeger Science, 1995, 269,25,1086
39Q. Pei and Y. Yang Synatheric Materals, 1996, 80, 131
40J. C. de Mello, N. Tessler, S. C. Graham, X. Li, A. B. Holmes and R. H. Friend Synatheric Materals, 1997, 85, 1277
41Andersson, A.; Johansson, N.; roms, P.; Lupo, N. Yu, D.; Salaneck, W.R. Adv. Mat., 1998, 11, 859.
42VanderKam, S. K.; Schwartz, G. J.; Bocarsly, A. B. Langmuir,1999, 15,6598
43Gardner, T. J.; Daniel, C.; Wrighton, M. S. J. Am. Chem. Soc., 1995, 117,6927
44D. A. Skoog, F. J. Holler, T. A. Nieman, Principle of Instrumental Analysis, 1997 Saunders College Publishing
45K. F. Voss, C. M. Foster, L. Smilowitz, D. Mihailovic, S. Askari, G. Srdanov, Z. Ni, S. Shi, A. J. Heeger, and F. Wudl, Phys. Rev. B. 1991, 43, 5109
46M. Atreya, S. Li. E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, W. Huang, Polumer Degradation and Stability, 1999,65,287
47M. Jaipal Reddy, Peter P. Chu, Solid State Ionics, 2002 article in press
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳泓德 (1993),”橋梁節塊推進工法概述”,中華技術,第17期,53-58。
2. 林樹柱、葉銘煌 (1996),”回顧近十年來台灣橋梁工程之建設概況-預力混凝土橋”,結構工程,第11卷、第1期,59-68。
3. 林楚儒 (1998b),”由施工者觀點看設計橋梁懸臂施工法篇(二)”,現代營建,第227期,24-30。
4. 85.楊錦釧,「台灣地區水庫淤積問題之探討」,土木水利,第十九卷第三期,pp.72-73 (1992)。
5. 83.蕭金財、張良正,「應用平行序率最佳控制於多目標水庫系統之優選操作」,中國土木水利工程學刊,第12卷,第3期,第551-560頁(2000)。
6. 姚乃嘉、任以永、李俊憲 (1999a),”地理資訊系統在橋梁管理之應用”,營建管理季刊,第三十九期,20-29。
7. 陳茂本 (1999),”箱形橋梁節塊推進施工安全探討”,品質管制月刊,第35卷,第10期,21-28。
8. 林信成 (1982),”近五十年來預力混凝土橋梁之發展”,住宅及都市發展月刊,第4期,10-12。
9. 林楚儒 (1998a),”由施工者觀點看設計橋梁懸臂施工法篇(一)”,現代營建,第226期,11-18。
10. 王祥騮 (1992),”節塊推進工法橋梁之規劃設計與施工(二)”,結構工程,第7卷、第1期,75-82。
11. 林楚儒 (1991b),”橋梁前進支撐工法的分析與設計之研究”,結構工程,第6卷,第4期,71-82。
12. 林楚儒 (1991a),”電腦在逐節推進工法橋梁的分析與設計方法之應用”,結構工程,第6卷、第3期,69-78。
13. 69.韓宇中、林松青、王茂興,「可視化培基程式應用於水庫並聯系統出水量電腦輔助分析」,中興工程第62期 (1999)。
14. 65.林松青、王茂興,「放水策略對水庫聯合運轉效率影響之研究」,中興工程第53期 (1996)。
15. 王祥騮 (1991),”節塊推進工法橋梁之規劃設計與施工(一)”,結構工程,第6卷、第3期,61-68。