(54.236.58.220) 您好!臺灣時間:2021/03/09 15:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:單少如
論文名稱:利用數值模擬與全球定位系統研究電離層赤道異常區
指導教授:郭富雄郭富雄引用關係
學位類別:博士
校院名稱:國立中央大學
系所名稱:太空科學研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:電離層赤道異常區全球定位系統電漿二維模擬程式電離層不規則體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
在赤道區電離層F層不規則體 (F-region irregularities) 被廣泛地觀測與數值模擬研究後,對於其產生的機制已逐漸地瞭解,基本上是由GRT不穩定性 (Gravitational Rayleigh-Taylor Instability),再加上 梯度漂移不穩定性 ( Gradient Drift Instability),兩者的效應造成電離層F層的不規則體。此種不規則體是由電離層底部產生的擾動,受到GRT與 不穩定性的放大效果逐漸往上舉升,最後穿過電離層最大密度區 (F-region peak)。但由衛星AE-C與AE-E的觀測資料,發覺有一種F層底部正弦曲線不規則體 (Bottomside Sinusoidal (BSS) Irregularity) 的存在,對於此種不規則體因為缺乏數值模擬的研究,所以對其產生機制並不瞭解。因此本篇主要目的之一是要瞭解此種不規則體的形成機制。
本篇另一個主要目的為瞭解電離層不規則體發生的經度與季節的關係與磁暴對控制電離層不規則體的形成的兩個研究。因為全球定位系統 (Global Positioning System, GPS) 的地面觀測站分佈於全球,適合研究全球電離層不規則體發生的經度與季節的關係。另外在磁暴與電離層不規則體的研究,為了排除其他控制電離層不規則體形成的影響,所以選擇不規則體不易產生的季節,當磁暴發生時,利用全球定位系統在中南美洲的地面觀測站來分析電離層的反應。
對於F層底部不規則體的研究主要是利用數值模擬的方法,由二維電漿流體模擬程式 (Fluid model simulation code) 來模擬此種不規則體產生的條件。由International GPS Service (IGS) 所提供的資料,來研究電離層不規則體發生的經度與季節的關係與磁暴對控制電離層不規則體的形成。對於前者我們選擇1998年的整年資料來分析。對於後者選擇從1997至2000年五月至八月發生的磁暴 (五月至八月期間,對於中南美洲而言,是不規則體不易產生的季節) 來分析電離層的狀況。利用全球定位系統雙頻虛擬距離與載波相位觀測的組合來求得電離層全電子含量值 (Total Electron Content, TEC),再由全電子含量值在時間上的變化量,得到由電離層不規則體所造成的全球定位系統相位擾動。由實際觀測天數與有相位擾動發生的天數得到的統計資料,來分析電離層不規則體發生的經度與季節的關係。另外根據磁暴發生時,地磁指數Dst變化的情形與觀測得到的相位擾動之間的關係,來瞭解磁暴控制電離層不規則體的情形。
由二維電漿流體模擬程式模擬不同的電離層外在的環境,最後終於成功地找出電離層F層底部不規則體形成所需要的環境。當電離層底部產生的擾動,受到GRT與 不穩定性的放大效果逐漸往上舉升,此時若在電離層最大密度區下存在一層噴射氣流(垂直風切),因為動力不穩定性的關係,會把擾動限制在電離層底部發展而不會繼續往上,因此形成電離層底部不規則體。
在研究電離層不規則體發生的經度與季節之間的關係,我們得到在大西洋區電離層不規則體的發生頻率,冬季(5月至8月)比夏季(11月至隔年2月)甚少,在太平洋的區域,則有相反的結果。磁暴與電離層GPS相位擾動之間的研究,經過八個磁暴資料的分析得到地磁指數Dst變化的時間與全球定位系統相位擾動的產生有相當程度的關係,只有當地磁指數Dst的數值在當地的日落前後開始劇烈地下降,才會造成強烈的相位擾動,另外磁暴的強度也是控制電離層不規則體發生的因素之一。

ABSTRACT
After extensive research efforts in both observations and theoretical simulation, it is generally believed that the F-region irregularities in the ionosphere above the equator are generated by the combined effects from the gravitational Rayleigh-Taylor (GRT) instability and the ExB gradient drift instability. Such generated irregularities initiate near the bottom of ionosphere due to small disturbances. They are amplified by GRT and ExB and gradually move upward, eventually penetrate the F-region peak of the ionosphere. However, observations from Satellites AE-C and AE-E suggest the existence of F-region bottomside sinusoidal (BSS) irregularities. Due to the lack of numerical modeling on such features, the mechanism responsible for their occurrence is not well understood, which is one of the purposes of this study.
Another goal of this study is to understand the relationship between the occurrence of ionospheric irregularities and controlling factors such as the longitude, the season, as well as the existence of magnetic storms. The worldwide distribution of Global Positioning System (GPS) stations enables such studies. I analyze the ionospheric characteristics in mid- and south- America using GPS signals to study the effect of magnetic storm on the generation of irregularities, specifically choosing the low-occurrence season to prevent the effects from other factors.
The study on the occurrence of F-region BSS irregularities is done through numerical simulation using the two-dimensional fluid model simulation code. The GPS data, which is used to study the relationship between the occurrence of irregularities and factors such as the longitude, season, and the existence of magnetic storms, are provided by the International GPS Service (IGS). For the formal, we select the entire year of 1998 for analysis, while for the later we choose magnetic storms that occurred in May-August (i.e., the low-occurrence season in mid- and south-America) between 1997 and 2000. Utilizing the information from dual-frequency pseudo range measurements and the carrier phase observations, the total electron content (TEC) can be estimated. Consequently, the variation of TEC with respect to time gives the GPS phase fluctuation due to the ionospheric irregularities. The relation between the occurrence of irregularities and the longitude and season can be then derived from the statistics on the number of days when irregularities are observed versus the total number of observation days. Furthermore, the effect of magnetic storms on the generation of irregularities can be delineated from the time sequence of Dst index and phase fluctuations.
Our simulation results indicate that specific environment is necessary for the occurrence of F-region BSS irregularities. When the seeding disturbance near the bottom side of F-region moves upward due to the amplifying effects from GRT and ExB instabilities, the dynamic instability would confine the generated irregularity near the bottom of ionosphere if there is a jet stream (i.e., vertical wind shear) immediately below the F-region peak of the ionosphere, resulting the F-region BSS irregularities.
As for the relationship between the irregularities and longitude/season, our results indicate stations in the Atlantic have high occurrence rate in winter (May-August) than in summer (November-February). In contrast, stations in the Pacific have the opposite pattern. Our study on the 8 magnetic storms indicates significant correlation between the time variation of Dst index and the GPS phase fluctuations. Strong phase fluctuations can be observed only when Dst index drops rapidly during the time of sunset. Furthermore, the intensity of the magnetic storm is another factor that controls the occurrence of ionospheric irregularities.

目 錄
摘要………………………………………………………………..Ⅰ
ABSTRACT………………………………………………………...IV
目錄………………………………………………………………..VI
圖目錄……………………………………………………………..VIII
表目錄……………………………………………………………..X
第一章緒論……………………………………………………1
1.1前言……………………………………………………1
1.2研究動機………………………………………………10
1.3研究方法………………………………………………12
1.4研究內容簡述…………………………………………13
第二章電離層F層底部不規則體的模擬……………………15
2.1簡介……………………………………………………15
2.2模擬方法………………………………………………17
2.3模擬結果………………………………………………20
2.3.1電漿密度微擾…………………………………….20
2.3.2中性氣體風場與種子重力波的微擾…………….21
2.4討論……………………………………………………33
第三章電離層---全球定位系統的觀測……………………....40
3.1觀測技術之原理………………………………………40
3.1.1虛擬距離的觀測………………………………….44
3.1.2載波相位的觀測………………………………….45
3.2全球定位系統觀測電離層不規則體…………………49
3.2.1觀測資料與結果…………………………………..51
3.2.2資料解釋與討論…………………………………..60
3.2.3結論………………………………………………..65
3.3全球定位系統觀測電離層擾動日…………………….66
3.3.1觀測資料與分析…………………………………..70
3.3.2討論………………………………………………..84
3.3.3結論………………………………………………..90
第四章總結…………………………………………………….92
參考文獻…………………………………………………………...95
圖 目 錄
圖1-1. 電離層的電漿密度與溫度隨高度的分佈。
圖1-2. 不同氣體的分子與離子隨高度的分佈。
圖1-3. 電離層三個主要區域:極區、中緯度區與赤道區。
圖1-4. 靠近磁赤道區所觀測到的電離圖上spread F的現象。
圖1-5. 祕魯Jicamarca同相散射雷達,觀測到在夜間電離層有密度極低的空腔結構,此結構為上升的電漿氣泡。
圖1-6. 人造衛星AE-C,觀測到赤道區電離層大尺度(10- 至 >200-公里)的電漿氣泡與不規則體。
圖1-7. Altair雷達與人造衛星AE-E,同時觀測到赤道區電離層的電漿氣泡由電離層底部往上發展。
圖1-8. 解釋GRT不穩定理論的卡通圖。
圖1-9. Zalesak et al. (1982)所做的數值模擬。
圖2-1. 人造衛星AE-E觀測到的底部不規則體與電漿氣泡。
圖2-2. 初始背景的電子密度與正離子與中性氣體分子的碰撞頻率隨高度的分佈。
圖2-3. 比較F層底部三個不同區域在密度微擾下的電漿密度等值線。
圖2-4. 比較F層底部三個不同區域受均勻背景中性風場微擾後的電漿密度等值線。
圖2-5. 在不均勻背景中性風場,高度為388-418公里區域內模擬的初始背景電漿密度與噴射氣流的表示圖。
圖2-6. 在不均勻背景中性風場微擾,高度為388-418公里區域內模擬的電漿密度等值線。
圖2-7. 在不均勻背景中性風場微擾,高度為368-398公里區域內模擬的電漿密度等值線。
圖2-8. 在不均勻背景中性風場微擾,高度為348-378公里區域內模擬的電漿密度等值線。
圖2-9. F層最大密度頂峰高度為350公里時的初始背景電漿密度與正離子與中性氣體分子的碰撞頻率剖面。
圖2-10. 比較F層底部三個不同區域受不均勻背景中性風場後的電漿密度等值線。
圖2-11. F層最大密度頂峰高度為300公里時的初始背景電漿密度與正離子與中性氣體分子的碰撞頻率剖面。
圖2-12. 比較F層底部三個不同區域受不均勻背景中性風場後的電漿密度等值線。
圖3-1. 全球定位系統的衛星分佈。
圖3-2. 衛星、地面接收站和亞電離層點的幾何關係。
圖3-3. 同時比較Jicamarca雷達與閃爍的資料。
圖3-4. Aarons et al. (1996)利用全球定位系統的相位擾動,以一分鐘的間隔去研究電離層不規則體。
圖3-5. Pi et al. (1997)利用全球定位系統的相位擾動,以一分鐘的間隔去研究電離層不規則體。
圖3-6. 本章節所選擇的全球定位系統地面接收站的地理位置與其涵蓋的面積。
圖3-7. 各地面接收站在1998年電離層不規則體依照月份所做的統計長條圖。
圖3-8. 在夏威夷全球定位系統的地面接收站觀測到的頻率閃爍在1992年每個月份的發生機率。
圖3-9. Mendillo et al. (2000)針對AREQ、FORT與KWJ1三個全球定位系統的地面接收站,利用全球定位系統相位擾動的方法來分析。
圖3-10. 地球南北半球季節形成的原因。
圖3-11. 垂直方向的地磁場分量,資料係由Oreted衛星所提供。
圖3-12. Aarons (1991)敘述Dst與相位擾動之間的關係的卡通圖。
圖3-13. 本章節所選擇的中南美洲七個全球定位系統地面接收站的地理位置與其涵蓋的面積。
圖3-14. 在中南美洲七個全球定位系統地面接收站在1998年的月平均的Fp值。
圖3-15. 1997-1998年發生的三個磁暴,在中南美洲的全球定位系統地面接收站所得到的的Fp值與磁暴的指數Dst與Kp值。
圖3-16. 1998-2000年發生的三個磁暴,在中南美洲的全球定位系統地面接收站所得到的的Fp值與磁暴的指數Dst與Kp值。
圖3-17. 1998-2000年發生的二個磁暴,在中南美洲的全球定位系統地面接收站所得到的的Fp值與磁暴的指數Dst與Kp值。
圖3-18. 在本研究其中三個磁暴的全電子含量等值線。
圖3-19. 在本研究其中三個磁暴的全電子含量等值線。
圖3-20. 在本研究其中二個磁暴的全電子含量等值線。
圖3-21. Dst開始下降的時間與相位擾動產生的時間兩者之間的關係的卡通圖。
圖3-22. 以地理經度75°W為基線,說明BOGT、AREQ與SANT三站,在觀測到相位擾動的程度上的差別的卡通圖。
表 目 錄
表3-1. 全球定位系統衛星發射的電碼與載波頻率。
表3-2. 本論文所研究的全球定位系統地面接收站的座標參數。
表3-3. 本論文所研究的全球定位系統地面接收站的座標參數。
表3-4. 本論文所討論的磁暴的基本參數。

參 考 文 獻
Aarons, J., The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms, Radio Sci., 26, 1131-1149, 1991.
Aarons, J., The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209-243, 1993.
Aarons, J., M. Mendillo, and R. Yantosca, GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign, J. Geophys. Res., 101, 26,851-26,862, 1996.
Aarons, J., M. Mendillo, and R. Yantosca, GPS phase fluctuations in the equatorial region during sunspot minimum, Radio Sci., 32, 1535-1550, 1997.
Aarons, J., M. Mendillo, B. Lin, M. Colerico, T. Beach, P. Kintner, J. Scali, B. Reinisch, G. Sales and E. Kudeki, Equatorial F region irregularity morphology during an equinoctial month at solar minimum, Space Sci. Rev., 87, 357-386, 1999.
Aarons, J., B. Lin, and M. Mendillo, Global positioning system phase fluctuations and ultraviolet images from the polar satellite, J. Geophys. Res., 105, 5201-5213, 2000.
Basu, Su., E. MacKenzie, and S. Basu, Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods, Radio Sci., 23, 363-378, 1988.
Batista, I.S., M.A. Abdu, and J.A. Bittencourt, Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector, J. Geophys. Res., 91, 12,055-12,064, 1986.
Batista, I.S., E.R.D. Paula, M.A. Abdu, and N.B. Trivedi, Ionospheric effects of the March 13, 1989, Magnetic storm at low and equatorial latitudes, J. Geophys. Res., 96, 13,943-13,952, 1991.
Beach, T.L., and P.M. Kintner, Simultaneous global positioning system observations of equatorial scintillations and total electron content fluctuations, J. Geophys. Res., 104, 22,553-22,565, 1999.
Blanc, M., and A.D. Richmond, The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669-1686, 1980.
Booker, H.G. and H. W. Wells, Scattering of radio waves by the F-region of the ionosphere, J. Geophys. Res., 43, 249, 1938.
Chou, S.Y., and F.S. Kuo, A numerical study of the wind field effect on the growth and observability of equatorial spread F, J. Geophys. Res., 101, 17,137-17,149, 1996.
Cragin, B.L., C.E. Valladares, W.B. Hanson, and J.P. McClure, Bottomside sinusoidal irregularities in the equatorial F region 2. Cross-correlation and spectral analysis, J. Geophys. Res., 90, 1721-1734, 1985.
Dabas, R. S., D. R. Lakshmi, and B. M. Reddy, Effect of geomagnetic disturbances on the VHF nighttime scintillation activity at equatorial and low latitudes, Radio Sci., 24, 563-573, 1988.
Davies, K., Ionospheric Radio, 580 pp., Peter Peregrinus Ltd, London, 1990.
Dungey, J.W., Convective diffusion in equatorial F-region, J. Atmos. Terr. Phys., 9, 304, 1956.
Fejer, B.G., E.R.d. Paula, I.S. Batista, E. Bonelli, and R.F. Woodman, Equatorial F region vertical plasma drifts during solar maxima, J. Geophys. Res., 94, 12,049-12,054, 1989.
Fukao, S., Y. Yamamoto, W. L. Oliver, T. Takami, M. D. Yamanaka, M. Yamamoto, T. Nakamura, and T. Tsuda, Middle and upper atmosphere radar observations of ionosphic horizontal gradients produced by gravity waves, J. Geophys. Res., 98, 9443-9451, 1993.
Gonzales, C.A., M.C. Kelley, R.A. Behnke, J.F. Vickrey, R. Wand, and J. Holt, On the latitudinal variations of the ionospheric electric field during magnetospheric disturbances, J. Geophys. Res., 88, 9135-9144, 1983.
Ho, C.M., A.J. Mannucci, U.J. Lindqwister, X. Pi, and B.T. Tsurutani, Global ionosphere perturbations monitored by the worldwide GPS network, Geophys. Res. Lett., 23, 3219-3222, 1996.
Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, GPS Theory and Practice, 389 pp., Springer-Verlag Wien, New York, 1997.
Huang, C. M., F. S. Kuo, H. Y. Lue, and C. H. Liu, Numerical simulation of the saturated gravity wave spectra in the atmosphere, J. Atmos, Terr. Phys., 54, 129-142, 1992.
Huang, C.S., M.C. Kelley, and D.L. Hysell, Nonlinear Rayleigh-Taylor instabilities, Atmospheric gravity waves and equatorial spread F, J. Geophys. Res., 98, 15,631-15,642, 1993.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread F 3. Plasma bubbles generated by structured electric fields, J. Geophys. Res., 101, 303-313, 1996.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread F 1. on the role of plasma instabilities and spatial resonance associated with gravity wave seeding, J. Geophys. Res., 101, 283-292, 1996.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread F 2. Gravity wave seeding of Rayleigh-Taylor instability, J. Geophys. Res., 101, 293-302, 1996.
Huang, Y.-N., K. Cheng, and S.-W. Chen, On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system, Radio Sci., 20, 897-906, 1985.
Hysell, D.T., M.C. Kelley, W.E. Swartz, and R.F. Woodman, Seeding and layering of equatorial spread F by gravity waves, J. Geophys. Res., 95, 17,253-17,260, 1990.
Jakowski, N., S. Schluter, and E. Sardon, Total electron content of the ionosphere during the geomagnetic storm on 10 January 1997, J. Atmos. and Sol. Terr. Phys., 61, 299-307, 1999.
Jones, K.L., and H. Rishbeth, The origin of storm increases of mid-latitude F-layer electron concentration, J. Atmos. Terr. Phys., 33, 391-401, 1971.
Kelley, M.C., G. Haerendel, H. Kraaler, A. Valenzuela, B.B. Balsley, D.A. Carter, W.L. Ecklund, C.W. Carlson, B. Hausler, and R. Torbert, Evidence for a rayleigh-taylor type instability and upwelling of depleted density regions during equatorial spread F, Geophys. Res. Lett., 3, 448-450, 1976.
Kelley, M.C., B.G. Fejer, and C.A. Gonzales, An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6, 301-304, 1979.
Kelley, M.C., M.F. Larsen, C. LaHoz, and J.P. McClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087-9100, 1981.
Kelley, M.C., The Earth's Ionosphere, 487 pp., Academic Press, San Diego, 1989.
Kuo, F. S., H. Y. Lue, C. M. Huang, C. L. Lo, C. H. Liu, S. Fukao, and Y. Muraoka, A study of velocity fluctuation spectra in the troposphere and lower stratosphere using MU radar, J. Atmos. Terr. Phys., 54, 31-48, 1992.
Kuo, F. S., and H. Y. Lue, Effect of the wave-shear interaction on gravity wave activity in the lower and middle atmosphere, J. Atmos. Terr. Phys., 56, 1147-1155, 1994.
Kuo, F. S., S. Y. Chou, S. J. Shan, Comparison of topside and bottomside irregularities in equatorial F region ionosphere, J. Geophys. Res., 103, 2193-2199, 1998.
Lindzen, R. S., Reconsideration of diurnal velocity oscillation in the thermosphere, J. Geophys. Res., 72, 1591-1598, 1967.
Leick, A., GPS Satellite Surveying, 560 pp., John Wiley & Sons, New York, 1995.
Liu, J.Y., H.F. Tsai, and T.K. Jung, Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci., 7, 111-121, 1996.
Liu, J. Y., H. F. Tsai, C. C. Wu, C. L. Tseng, L. C. Tsai, W. H. Tasi, K. Liou and J. K. Chao, The effect of geomagnetic storm on ionospheric total electron content at equatorial anomaly region, Adv. Space Res., 24, 1491-1494, 1999.
Martyn D. F., Large-scale movements of ionization in the ionosphere, J. Geophys. Res., 64, 2178, 1959.
Maruyama, T., and N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10,903-10,912, 1984.
Maruyama, T., A diagnostic model for equatorial spread F: 1. Model description and application to electric field and neutral wind effects, J. Geophys. Res., 93, 14,611-14,622, 1988.
Mendillo, M., B. Lin, and J. Aarons, The application of GPS observations to equatorial aeronomy, Radio Sci., 35, 885-904, 2000.
McClure, J.P., W.B. Hanson, and J.H. Hoffman, Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656, 1977.
Mullen, Sensitivity of equatorial scintillation to magnetic activity, J. Atmos. Terr. Phys., 35, 1187-1194, 1973.
Neubert, T., M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J. L. Jørgensen, E. Friis-Christensen, P. Stauning, N. Olsen, and T. Risbo, ørsted satellite captures high-precision geomagnetic field data, EOS Trans. Am. Geophys. Union, 82, 81-88, 2001.
Ossakow, S.L., Spread-F theories---a review, J. Atmos. Terr. Phys., 43, 437-452, 1981.
Pi, X., A.J. Mannucci, U.J. Lindqwister, and C.M. Ho, Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283-2286, 1997.
Rottger, J., Equatorial spread-F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43, 453-462, 1981.
Sardón, E., A. Rius, and N. Zarraoa, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29, 577-586, 1994.
Sastri, J.H., K.B. Ramesh, and D. Karunakaran, On the nature of substorm-related transient electric field disturbances in the equatorial ionosphere, Planet. Space Sci., 40, 95-103, 1992.
Scannapieco, A.J., and S.L. Ossakow, Nonlinear equatorial spread F, Geophys. Res. Lett., 3, 451-454, 1976.
Shu, F. H., An Introduction to Astronomy, 584 pp., University Science Books, Mill Valley, 1982.
Singh, S., F.S. Johnson, and R.A. Power, Gravity wave seeding of equatorial plasma bubbles, J. Geophys. Res., 102, 7399-7410, 1997.
Su, Y.Z., K.-I. Oyama, G.J. Bailey, S. Fukao, T. Takahashi, and H. Oya, Longitudinal variations of the topside ionosphere at low latitudes: Satellite measurements and mathematical modelings, J. Geophys. Res., 101, 17,191-17,205, 1996.
Tsai, H.F. and J.Y. Liu, Ionospheric total electron content response to solar eclipses, J. Geophys. Res., 104, 12,657-12,668, 1999.
Tsunoda, R.T., Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447-456, 1985.
Valladares, C.E., W.B. Hanson, J.P. McClure, and B.L. Cragin, Bottomside sinusoidal irregularities in the equatorial F region, J. Geophys. Res., 88, 8025-8042, 1983.
Wanninger, L., Effects of the equatorial ionosphere on GPS, GPS World (July), 48-54, 1993.
Whalen, J.A., An equatorial bubbles: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly, J. Geophys. Res., 105, 5303-5315, 2000.
Woodman, R.F., and C.L. Hoz, Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447-5466, 1976.
Woodman, R.F., and S. Basu, Comparison between in-situ spectral measurements of equatorial F-region irregularities and backsactter observations at 3 m wavelength, Geophys. Res. Lett., 5, 869-872, 1978.
Zalesak, S.T., and S.L. Ossakow, Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations, J. Geophys. Res., 85, 2131—2142, 1980.
Zalesak, S.T., S.L. Ossakow, and P.K. Chaturvedi, Nonlinear equatorial spread F: The effect of neutral winds and background pedersen conductivity, J. Geophys. Res., 87, 151-166, 1982.
Zarraoa, N., and E. Sardón, Test of GPS for permanent ionospheric TEC monitoring at high latitudes, Ann. Geophys., 14, 11-19, 1996.
周雪燕, 中性氣體風場對赤道區域電離F層電漿密度不規則結構之模擬研究, 國立中央大學大氣物理研究所博士論文, 中壢, 1995.
蔡和芳, 全球定位系統觀測電離層全電子含量, 國立中央大學太空科學研究所碩士論文, 中壢, 1995.
蔡和芳, 全球定位系統觀測電離層赤道異常之研究, 國立中央大學太空科學研究所博士論文, 中壢, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔