跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王鴻猷
研究生(外文):Hung-Yu Wang
論文名稱:連續時間電流式濾波與振盪電路設計與合成
論文名稱(外文):The Design and Synthesis of Current-Mode Continuous Time Filters and Oscillators
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:博士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:電流式濾波器振盪器特異元件反函數濾波器阻納模擬
外文關鍵詞:Current-ModeFilterOscillatorPathological ElementInverse filterImmittance Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
電流式類比信號處理系統有許多具潛力的優異點,包括較大的頻寬、較低的電路複雜度、較寬的動態範圍、較快的操作速度。由於文獻上可取得眾多連續時間電壓式電路,電路轉換技術因而受到不少的注意,因為藉由轉換技術可由現有電路直接產生新的電路。在這些轉換技術中,以伴隨轉換(Adjoint Transformation)與反函數轉換(Inverse Transformation)最為普遍,伴隨轉換適用於單輸入單輸出系統,可將電壓式(電流式)電路轉換得電流式(電壓式)電路,由於多輸入/多輸出系統具較大的應用方便性,我們擴大伴隨轉換的使用,將其應用在多輸入/多輸出系統上。另外,藉由反函數轉換,我們可以獲得原系統的反函數系統,這種技術可應用在通訊、控制、量測系統的需求上。為減少經反函數轉換所得的反函數系統的電路複雜度,本文中亦探討如何將反函數轉換應用在其他的特異元件(Pathological Element)上,我們也定義了新的四端主動元件以實現反函數系統中的四端特異元件,並合併使用伴隨轉換與反函數轉換以獲得電流式反函數濾波器,並就其串接特性作深入探討。除了利用電路轉換合成技術產出電路外,我們也直接設計一些獨特的振盪器與濾波器。所提出的濾波器電路是利用雙輸出電流傳輸器(Current Conveyor)當主動元件來設計,具備多功能、可串接、易積體化、低主動與被動靈敏度、構造簡單等特點。最後,為設計高階濾波器與振盪器,我們探討了阻納模擬電路的設計,並探究如何有系統地合成各種阻納模擬。論文中提出的所有新技術,都經由電腦模擬器模擬或實驗量測驗證過,相信所提出的技術,提供了類比信號處理電路上新的設計領域與可行之道,在高效能電流式主動元件與電路積體化研製的更進一步研究,則為未來將探討的主題。

The implementation of analog signal processing systems in the current domain offers the potential advantages of higher bandwidth capability, less circuit complexity, wider dynamic range, and higher operating speed. Consequently, current-mode approach has been accepted as an alternative mean besides the traditional voltage-mode circuits.Owing to the availability of wealthy voltage-mode continuous time circuits in the literature, the techniques of transformation have received considerable attention for their convenience in generating new circuits from present well-developed voltage-mode ones. Among the transformation techniques, adjoint transformation and inverse transformation are two of the most popular ones. Adjoint transformation is a general method to derive current-mode filters from voltage-based filters for the single-input-single-output systems. We extend the application of adjoint transformation in designing multi-input/multi-output filters due to the growing interest in designing multi-input or multi-output systems. Inverse transformation is also a general method for obtaining the inverse system in the case of continuous time circuit for applications in communication, control and instrumentation systems. For reducing the circuit complexity of some derived inverse systems, the application of other pathological elements in the inverse transformation has been investigated in this dissertation. New defined active building blocks are employed for realizing the four-terminal pathological elements in the derived inverse circuits and adjoint circuits. Moreover, the combination of adjoint and inverse transformations is presented that can be used to obtain current-mode inverse filters, along with an investigation of the cascadability of the derived filters.
In addition to the synthesis approach in virtue of transformations, direct design of oscillators and filters are presented. Finally, immittance simulated circuits have been studied for the designs of higher-order active filters and sinusoidal oscillators. A systematic approach to the synthesis of various immittances has been explored.
All the new techniques proposed in this dissertation have been verified by computer simulations or experimental measurements. It is believed that the proposed techniques offer promising approaches and new scope for the design of analog signal processing circuits. Further research on high-performance implementation of the current-mode active devices and circuits in monolithic technology is the subject of future study.

Contents
Abstract (Chinese)
Abstract (English)
Acknowledgment
Contents
Table Captions
Figure Captions
Chapter 1 Introduction 1
1.1 Current-Mode Analog Signal Processing…….1
1.2 Recent Development for Analog Filter Design……….3
1.3 Organization of This Dissertation………………...4
Chapter 2 Circuit Synthesis with Pathological Elements 7
2.1 Introduction……………………………………………………….7
2.2 The Four-Terminal Active Elements and Their Implementations….8
2.2.1 New proposed Four-Terminal Pathological Elements……..8
2.2.2 Implementations……………………………………………...9
2.3 Application of Inverse Transformation………….…10
2.3.1 Inverse Transformation……………………………..10
2.3.2 Cascadability and Equivalence……………………..10
2.3.3 Extending Inverse Transformation……………………11
2.3.4 Illustration……………………………………………...12
2.4 Application of Adjoint Transformation………….…13
2.4.1 Adjoint ransformation………………………………….13
2.4.2 Illustration………………………………………………13
2.4.3 Simulation………………………………………………….14
2.5 Applying Adjoint Transformations to Multi-Input/Multi-Output Systems………………………………………15
2.5.1 Transformation Procedure…………………………….15
2.5.2 Illustration………………………………………………16
2.5.3 Simulation………………………………………………….17
2.6 Current-Mode Inverse Filter Synthesis………………18
2.6.1 Transformation Procedure………………………………18
2.6.2 Application and Result…………………………………19
2.6.3 Simulation………………………………………………….20
2.7 Summary………………………………………………………….21
Chapter 3 Novel Design of Oscillators and Filters 22
3.1 Minimally Realized Sinusoidal Oscillators……..22
3.1.1 Introduction……………………………………………….22
3.1.2 Circuit Configuration…………………………………23
3.1.3 Experimental Results and Discussion………………25
3.2 Versatile Universal Current-Mode Biquad……………26
3.2.1 Introduction…………………………………………………26
3.2.2 Circuit Description…………………………………..27
3.2.3 Advantages of Proposed Filters…………………….31
3.2.4 Simulation Results and Discussion…………………32
3.3 Summary……………………………………………………….34
Chapter 4 Immittance Function Simulators 36
4.1 Immittance Simulator Using a Single Current Conveyor...37
4.1.1 Introduction………………………………………………37
4.1.2 Circuit Description…………………………………..37
4.1.3 Non-ideal Effect of CCII+………………………………38
4.1.4 Simulation Result………………………………………39
4.2 Realization of R-L and C-D Immittance Using Single FTFN………39
4.2.1 Introduction………………………………………………….39
4.2.2 Circuit Description……………………………………40
4.2.3 Simulation Result………………………………………41
4.3 Systematic Synthesis of R-L and C-D Immittances Using Single CCIII………………………………………………42
4.3.1 Introduction…………………………………42
4.3.2 Synthesis Procedure………………………………43
4.3.3 Simulation Result………………………………………47
4.4 Realization of Nth-Order Parallel Immittance Function Employing Only (N-1) FTFNs………………………..49
4.4.1 Introduction………………………………………………49
4.4.2 Circuit Configuration………………………………….49
4.4.3 Applications to Filters………………………………51
4.4.4 Simulation Result…………………………………...52
4.5 Summary……………………………………………………….52
Chapter 5 Conclusion and Future Work 54
Tables 56
Figures 65
References 110
Vita 121
Publication List 122
Acronyms and Symbols 124

[1] C. Toumazou, F.J. Lidgey, and D.G. Haigh, Analogue IC Design: the current-mode approach, Peter Peregrinus, London, 1990.
[2] M.M. Khellah and M.I. Elmasry, “A low-power high-performance current-mode multiport SRAM,” IEEE Trans. VLSI Syst., 9, pp. 590-598, 2001.
[3] M.W. Allam and M. I. Elmasry, “Dynamic current mode logic (DyCML), a new low-power high-performance logic family,” IEEE Proc. CICC, pp.421-424, 2000.
[4] A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba, T. Endoh, and F. Masuoka, “0.18um CMOS 10Gb/s multiplexer/demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation,” IEEE J. Solid-State Circuits, 36, pp. 988-996, 2001.
[5] C. Toumazou, J.B. Hughes, and N.C. Battersby, Eds. Switched Currents: an analogue technique for digital technology, Peter Peregrinus, London, 1993.
[6] B. Wilson, “Recent developments in current conveyors and current-mode circuits,” IEE Proc. G, 137, pp. 63-77, 1990.
[7] A.F. Arbel and L. Goldminz, “Output stage of current-mode feedback amplifiers, theory and applications,” Analog Integrated Circuits and Signal Processing, 2, pp.243-255, 1992.
[8] A.F. Arbel, J.E. Bowers, and J. Lauch, “Low-noise high-speed optical receiver for fiber optic systems,” IEEE J. Solid-State Circuits, 19, pp. 155-157, 1984.
[9] T. Kaulberg, “A CMOS current-mode operational amplifier,” IEEE J. Solid-State Circuits, 28, pp. 849-852, 1993.
[10] A.S. Sedra, G.W. Roberts, and F. Gohh, “The current conveyor: History, progress and new results,” IEE Proc. G, 137, pp. 78-87, 1990.
[11] F. Seguin and A. Fabre, “2 GHz controlled current conveyor in standard 0.8um BiCMOS technology,” Electron. Lett., 37, pp. 329-330, 2001.
[12] J.H. Huijsing, “Operational floating amplifier,” IEE Proc. G, 137, pp. 131-136, 1990.
[13] A.M. Ismail and A.M. Soliman, “Novel CMOS current feedback op-amp realization suitable for high frequency applications,” IEEE Trans. Circuits Syst. I, 47, pp. 918-921, 2000.
[14] H. Elwan, W. Gao, R. Sadkowski, and M. Ismail, “CMOS low-voltage class-AB operational transconductance amplifier,” Electron. Lett., 36, pp. 1439-1440, 2000.
[15] H.O. Elwan and A.M. Soliman, “Novel CMOS differential voltage current conveyor and its applications,” IEE Proc. Circuits, Devices, and Syst., 144, pp. 195-200, 1997.
[16] W. Chiu, S.I. Liu, H.W. Tsao, and J.J. Chen, “CMOS differential difference current conveyors and their applications,” IEE Proc. Circuits, Devices, and Syst., 143, pp. 91-96, 1996.
[17] M. Higashimura, “Realisation of current-mode transfer function using four-terminal floating nullor,” Electron. Lett., 27, pp. 170-171, 1991.
[18] A. Johns D. and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.
[19] B. Nauta, Analog CMOS Filters for Very High Frequencies, Kluwer Academic Publishers, 1993.
[20] I.A. Awad and A.M. Soliman, “Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications,” Int. J. Electron., 86, pp. 413-432, 1999.
[21] L. Serrano and A. Carlosena, “Active RC impedances revisited,” Int. J. Circuit Theory and Applications, 25, pp. 289-305, 1997.
[22] A. Leuciuc, “Using nullors for realisation of inverse transfer functions and characteristics,” Electron. Lett., 33, pp. 949-951, 1997.
[23] G.W. Roberts, and A.S. Sedra, “A general class of current amplifier-based biquadratic filter circuits,” IEEE Trans. Circuits Syst., 39, pp. 257-263, 1992.
[24] H.Y. Wang and C.T. Lee, “Using nullors for realization of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 1889-1890, 1999.
[25] R. Senani, “A novel application of four-terminal floating nullors,” IEEE Proc., 75, pp. 1544-1546, 1987.
[26] J.A. Svoboda, “Current conveyors, operational amplifiers and nullors,” IEE Proc., pt. G, 136, pp. 317-322, 1989.
[27] M. Higashimura, “Realisation of current-mode transfer function using four-terminal floating nullor,” Electron. Lett., 27, pp. 170-171, 1991.
[28] A. Carlosena and G.S. Moschytz, “Nullators and norators in voltage to current mode transformations,” Int. J. Circuit Theory Applicat., 21, pp. 421-424, 1993.
[29] M. Desai, P. Aronhime, and J. Zurada, “Current-mode network transformations,” IEEE Proc. Int. Symp. Circuits and Systems, pp. 599-602, 1994.
[30] R. Senani, “On the transformation of RC-active oscillators,” IEEE Trans. Circuits Syst., 34, pp. 1091-1093, 1987
[31] A. Leuciuc, “The realization of inverse system for circuits containing nullors with applications in chaos synchronization,” Int. J. Circuit Theory Applicat., 26, pp. 1-12, 1998.
[32] B. Chipipop and W. Surakampontorn, “Realisation of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 690-692, 1999.
[33] I. A. Awad and A.M. Soliman, “Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications,” Int. J. Electron., 86, pp. 413-432, 1999.
[34] H. Schmid, “Approximating the universal active element,” IEEE Trans. Circuits Syst. II, 47, pp. 1160-1169, 2000.
[35] B. Wilson, “Tutorial review: Trends in current conveyor and current-mode amplifier designs,” Int. J. Electron., 73, pp. 573-583, 1992.
[36] J.H. Huijsing, “Operational floating amplifier (OFA).” Proc. Inst. Elect. Eng, pt. G, 137, pp. 131-136, 1990.
[37] U. Cam and H. Kuntman, “A new CMOS realization of a four terminal floating nullor (FTFN),” Int. J. Electron., 87, pp. 809-817, 2000.
[38] U. Cam, A. Toker, and H. Kuntman, “CMOS FTFN realisation based on translinear cells,” Electron. Lett., 36, pp. 1255-1256, 2000.
[39] H.Y. Wang and C.T. Lee, “Realisation of R-L and C-D immittances using single FTFN,” Electron. Lett., 34, pp. 502-503, 1998.
[40] S.I. Liu and J.L. Lee, “Insensitive current/voltage-mode filters using FTFNs,” Electron. Lett., 32, pp. 1079-1080, 1996.
[41] M.T. Abuelma’atti and H.A. Al-zaher, “Current-mode sinusoidal oscillators using single FTFN,” IEEE Trans. Circuits Syst.II, 46, pp. 69-74, 1999.
[42] L.T. Bruton, RC active circuits: theory and design, Prentice Hall, Englewood Cliffs, NJ, USA, 1980.
[43] C. Acar, “On the realization of current-mode filters using second-generation current conveyors,” Int. J. Circuit Theory Applicat., 25, pp. 229-233, 1997.
[44] S. Ozoguz and C. Acar, “Single-input and three-output current-mode universal filter using a reduced number of active elements,” Electron. Lett., 34, pp. 605-606, 1998.
[45] W. Surakampontorn, V. Riewruja, K. Kumwachara, and K. Dejhan, “Accurate CMOS-based current conveyors,” IEEE Trans. Instrum. Meas., 40, pp. 699-702, 1991.
[46] A.M. Ismail and A.M. Soliman, “Wideband CMOS current conveyor,” Electron. Lett., 34, pp. 2368-2369, 1998.
[47] S. Ozoguz, A. Toker, and O. Cicekoglu, “First-order allpass sections-based current-mode universal filter using ICCIIs,” Electron. Lett., 36, pp. 1443-1444, 2000.
[48] C.S. Hilas and Th. Laopoulos, “Circuit design: a study on voltage-mode to current—mode conversuion techniques,” Electrotechnical Conference, 3, pp. 1309-1312, 1996.
[49] S.W. Director and R.A. Rohrer, “The generalized adjoint network and network sensitivities,” IEEE Trans. Circuits Syst., 16, pp. 318-323, 1969.
[50] C.T. Lee and H.Y. Wang, “Minimum realisation for FTFN-based SRCO,” Electron. Lett., 37, pp. 1207-1208, 2001.
[51] C.M. Chang and M.J. Lee, “Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors,” IEEE Trans. Circuit and Systems I, 46, pp.1364-1365, 1999.
[52] A. Fabre and M. Alami, “Universal current mode biquad implemented from two second generation current conveyors,” IEEE Trans. Circuit and Systems I, 42, pp.383-385, 1995.
[53] Z.J. Lata and P.B. Aronhime, “Cascadable current-mode biquads,” Analog Integrated Circuits and Signal Processing, 13, pp.275-284, 1997.
[54] W.K. Chen, The Circuits and Filters Handbook, CRC Press, 1995.
[55] J.W. Horng, C.C. Tsai, and M.H. Lee, “Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors,” Int. J. Electronics, 80, pp. 543-546, 1996.
[56] G.H. Wang, Y. Fukui, K. Kubota, and K. Watanabe, “Voltage-mode to current-mode conversion by an extended dual transformation,” IEEE Proc. Int. Symp. Circuits and Systems, 3, pp. 1833-1836, 1991.
[57] B. Chipipop and W. Surakampontorn, “Realisation of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 690-692, 1999.
[58] G.H. Wang, K. Watanabe, and Y. Fukui, “Voltage-mode to current-mode conversion by an extended dual transformation,” IEEE Proc. Int. Symp. Circuits and Systems, Singapore, pp. 1833-1836, 1991.
[59] J.J. Friend, C.A. Harris, and J. Sabadell, “STAR: An active biquadratic filter section,” IEEE Trans. Circuits Syst., 22, pp.115-121, 1975.
[60] M. Higashimura and Y. Fukui, “Realization of all-pass and notch filters using a single current conveyor,” Int. J. Electron., 65, pp.823-828, 1988.
[61] H.Y. Wang and C.T. Lee, “Versatile insensitive current-mode universal biquad implementation using current conveyors” IEEE Trans. Circuits Syst. II, 48, pp. 409-413, 2001.
[62] J.V. Vosper and M. Heia, “Comparison of single- and dual-element frequency control in a CCII-based sinusoidal oscillator,” Electron. Lett., 32, pp. 2293-2294, 1996.
[63] A.M. Soliman, “Current mode CCII oscillators using grounded capacitors and resistors,” Int. J. Circuit Theory Appl., 26, pp.431-438, 1998.
[64] S. Celma, P.A. Martinez, and A. Carlosena, “Approach to the synthesis of canonic RC-active oscillators using CCII,” IEE Proc. Circuits, Devices Syst., 141, pp. 493-497, 1994.
[65] S. Celma, P.A. Martinez, and A. Carlosena, “Minimal realisation for single resistor controlled sinusoidal oscillator using single CCII,” Electron. Lett., 28, pp. 443-444, 1992.
[66] S.S. Gupta and R. Senani, “Grounded-capacitor current-mode SRCO: Novel application of DVCCC,” Electron. Lett., 36, pp. 195-196, 2000.
[67] C.L. Hou, R. Yean, and C.K. Chang, “Single-element controlled oscillators using single FTFN,” Electron. Lett., 32, pp. 2032-2033, 1996.
[68] S.I. Liu, “Single-resistance-controlled sinusoidal oscillator using two FTFNs,” Electron. Lett., 33, pp. 1185-1186, 1997.
[69] D.R. Bhaskar, “Single resistance controlled sinusoidal oscillator using single FTFN,” Electron. Lett., 35, pp. 190, 1999.
[70] R.M. Weng, “Single-Resistance-controlled oscillator using only one PFTFN,” IEEE Proc. APCCAS, Tianjin, pp. 213-214, 2000.
[71] C. Toumazou and F.J. Lidgey, “Universal active filter using current conveyors,” Electron. Lett., 22, pp.662-664, 1986.
[72] T. Tsukutani, M. Ishida, S. Tsuiki, and Y. Fukui, “Current-mode biquad without external passive,” Electron. Lett., 32, pp.197-198, 1996.
[73] H.O. Elwan and A.M. Soliman, “A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI,” IEEE Trans. Circuit Syst. II, pp.663-670 , 1996.
[74] J.W. Horng and M.H. Lee, “High input impedance voltage-mode lowpass, bandpass and highpass filter using current-feedback amplifiers,” Electron. Lett., 33, pp.947-948, 1997.
[75] M.T. Abuelma’atti and H.A. Al-zaher, “New universal filter with one input and five outputs using current-feedback amplifiers,” Analog Integrated Circuits and Signal Processing, 16, pp.239-244, 1998.
[76] Z.J. Lata and P.B. Aronhime, “Cascadable current-mode biquads,” Analog Integrated Circuits and Signal Processing, 13, pp.275-284, 1997.
[77] A.M. Soliman, “New current mode filters using current conveyors,” AEU Int. J. Electronics Commun., 51, pp.275-278, 1997.
[78] E.O. Gunes, A. Toker, and S. Ozoguz, “Insensitive current-mode universal filter with minimum components using dual-output current conveyors,” Electron. Lett., 35, pp.524-525, 1999.
[79] O. Oliaei and J. Porte, “Compound current conveyor (CCII+ and CCII-),” Electron. Lett., 33, pp.253-254, 1997.
[80] B. Al-hashimi, “Current mode filter structure based on dual output transconductance amplifiers,” Electron. Lett., 32, pp.25-26, 1996.
[81] A. Fabre, “Third-generation current conveyor: a new helpful active element,” Electron. Lett., 31, pp.338-339, 1995.
[82] A. Durham and W. Redman-White, “Integrated continuous-time balanced filters for 16-b DSP interfaces,” IEEE J. Solid-State Circuits, 28, pp. 835-839, 1993.
[83] G. Moon, M.E. Zaghloul, and R.W. Newcomb, “An enhancement-mode MOS voltage-controlled linear resistor with large dynamic range,” IEEE Trans. Circuits Syst., 37, pp. 1284-1288, 1990.
[84] G. Wilson and P.K. Chan, “Novel voltage controlled grounded resistor,” Electronic. Lett., 25, pp. 1725-1726, 1989.
[85] A. Carlosena and G.S. Moschytz, “Design of variable-gain current conveyors,” IEEE Trans. Circuit and Systems I, 41, pp.79-81, 1994.
[86] W. Surakampontorn and P. Thitimajshima, “Integrable electronically tunable current conveyors,” IEE Proc. Pt. G, 135, pp.71-77, 1988.
[87] A. Piovaccari, “CMOS integrated third-generation current conveyor,” Electron. Lett., 31, pp.1228-1229, 1995.
[88] A. Fabre, O. Saaid, and H. Barthelemy, “On the frequency limitations of the circuits based on second generation current conveyors,” Analog Integrated Circuits and Signal Processing, 7, pp.113-129, 1995.
[89] A.S. Sedra and P.O. Brackett, Filter theory and design: active and passive, Matrix Publishers, INC., 1978.
[90] H.Y. Wang and C.T. Lee, “Immittance function simulator using a single current conveyor,” Electron. Lett., 33, pp. 574-576, 1997.
[91] H.Y. Wang and C.T. Lee, “Systematic synthesis of R-L and C-D immittances using single CCIII,” Int. J. Electron., 87, pp. 293-301, 2000.
[92] A.S. Sedra and K.C. Smith, “A second-generation current conveyor and its applications,” IEEE Trans. Circuit Theory, 17, pp.132-134, 1970.
[93] R. Nandi, “A new equal-valued grounded-capacitor resonator realization using current conveyor,” Proc. IEEE, 67, pp.870-871, 1979.
[94] K. Pal, “Novel F.D.N.C. simulation using current conveyors,” Electron. Lett., 16, pp.639-640, 1980.
[95] A. Himura, Y. Fukui, M. Ishida, and M. Higashimura, “Immittance function simulator using a single current conveyor,” IEICE Trans, E2, pp.1279-1284, 1989.
[96] C.M. Chang, H.Y. Wang, and C.C. Chien, “Realization of series impedance functions using one CCII+,” Int. J. Electron., 76, pp. 83-85, 1994.
[97] S.I. Liu and Y.S. Hwang, “Realisation of R-L and C-D impedances using a current feedback amplifier and its applications,” Electron. Lett., 30, pp. 380-381, 1994.
[98] R. Senani, “On equivalent forms of single op-amp sinusoidal RC oscillators,” IEEE Trans. Circuits Syst. I, 41, pp. 617-624, 1994.
[99] L. Serrano and A. Carlosena, “Active RC impedances revisited,” Int. J. Circuit Theory Applicat., 25, pp. 289-305, 1997.
[100] S.I. Liu and C.Y. Yang, “Higher-order immittance function synthesis using CCIIIs,” Electron. Lett., 32, pp. 2295-2296, 1996.
[101] A. Himura, Y. Fukui, M. Ishida, and M. Higashimura, “Series impedance simulators using one CCII,” Electron. Lett., 26, pp.269-270, 1990.
[102] C.M. Chang, H.Y. Wang., and C.C. Chien, “Realization of series impedance functions using one CCII+,” Int. J. Electron, 76, pp. 83-85, 1994.
[103] R. Senani, B.A. Kumar, and M.P. Tripathi, “Systematic generation of OTA-C sinusoidal oscillators,” Electron. Lett, 26, pp. 1457-1459, 1990.
[104] M. Higashimura and Y. Fukui, “Novel method for realizing higher-order immittance function using current conveyors,” Proceedings of International Symposium on Circuits and Systems, pp. 2677-2680, 1998.
[105] M. Ishida, M. Higashimura, Y. Fukui, K. Ebisutani, “Synthesis of immittance function using current conveyors,” Proceedings of International Symposium on Circuits and Systems, pp. 2681-2684, 1998.
[106] R.M. Weng, J.R. Lai, and M.H. Lee, “Realization of nth-order series impedance function using only (n-1) current-feedback amplifiers,” Int. J. Electron, 87, pp. 63-69, 2000.
[107] W. Surakampontorn and K. Kumwachara, “CMOS-based electronically tunable current conveyor,” Electron. Lett., 28, pp.1316-1317, 1992.
[108] L. Wan and S. Natarajan, “Optimal design of CCII-K circuits for high frequency applications,” Proceedings 27th SSST, pp. 175-179, 1995.
[109] L. Wan and S. Natarajan, “Experimental verification of variable gain CCII-K circuits and Modeling of AD844,” Proceedings 29th SSST, pp. 168-172, 1997.
[110] J.A. Svoboda, L. McGory, and S. Webb, “Application of a commercially available current conveyor,” Int. J. Electron, 70, pp. 159-164, 1991.
[111] C.C. Chen, The design and analysis of new current-mode analog-to-digital converters and sample/hold circuits, Institute of Electronics, National Chiao-Tung University, Ph. D. dissertation, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top