跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張健煌
研究生(外文):CHIEN-HUANG CHANG
論文名稱:漸增載重之壓密速算公式
論文名稱(外文):The quick-estimation formula of the settlement induced by time-dependent loading
指導教授:李顯智李顯智引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:120
中文關鍵詞:單向度壓密GibsonTerzaghi速算公式
外文關鍵詞:quick-estimation formulaTerzaghione dimensional consolidationGibson
相關次數:
  • 被引用被引用:2
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

Terzaghi單向度壓密理論被廣泛的應用在工程界,然而Terzaghi單向度壓密理論之優點是解析解易求得﹔缺點則是低估超額孔隙水壓的變化。往後學者如Gibson等人便根據上述的理論缺失來進行修正,並於1967年提出飽和黏土的壓密方程式,即Gibson-England-Hussey(簡稱G.E.H.)壓密理論,為一非線性的偏微分方程式。其應用範圍不受限於小應變的情況。而其優點為假設條件較符合土壤壓密的實際情況﹔缺點則是無法直接求得解析解。但是由最近所發表的文獻中,可知已經能夠將G.E.H.理論的單向度壓密方程式予以線性化。
雖然G.E.H.理論已經可求得解析解,但是求解上卻太過於麻煩。故本論文研究的目的乃在於推導出土壤受動態載重時壓密度的速算公式,並與Terzaghi壓密理論比較,提供計算壓密沉陷的參考。


The merit of the Terzaghi theory is that the analytical solution can be obtained easily. How-ever , this theory sometimes underestimates the variation of the excess pore water pressure. Ano-ther theory proposed by Gibson et. al. is more realistic but more difficult to handle due to its nonlinearity.
This research try to derive a quick-estim-ation formula can calculate the settlement induc-ed by time-dependent loading. The results will be compared with these obtained by the Terzaghi’s theory.


中文摘要
英文摘要
目錄
圖目錄
第一章 緒論
1-1研究動機與目的
1-2研究方法
1-3論文內容
第二章 Gibson-England-Hussey壓密理論簡介
2-1前言
2-2 G.E.H.壓密控制方程式的推導
2-2-1分析模型及座標系統的選取
2-2-2 G.E.H.控制方程式的推導
2-3 G.E.H.薄土層壓密控制方程式的推導
第三章 G.E.H.薄土層壓密控制方程式的求解
3-1薄土層壓密控制方程式之線性化
3-1-1變數轉換
3-1-2變數角色變換
3-2新自變數q的物理意義
3-3薄土層壓密控制方程式之近似解
3-3-1分析模型及控制方程式的介紹
3-3-2控制方程式及其解析解的求解
第四章 G.E.H.薄土層壓密方程式的近似解
4-1牛頓-拉夫森法(Newton-Raphson Method)
4-2速算公式法
第五章 實例分析
5-1 實例分析
5-2 不同載重加載方式之實例分析
第六章 結論
6-1 結論
附錄一
附錄二
參考文獻


[1] Lee,K.,“Discussion on Terzaghi’s Concept of Consolidation,” Geotechnique, Vol.34,No.1,pp. 131-132(1984).[2] Richart, F.E.,“A Review of the Theories for Sand Drains,” Proc.Am.Soc.civ.Engrs,SM3,No.1301,(1957).[3] Lo,K.Y.,“Discussion on Rowe, Measurement of the Coefficient of Consolidation of Lacustrine Clay,” Geotechnique, Vol 10,No 1,pp. 36-39(1960).[4] Janbu, N.,“Consolidation of Clay Layers Basedon NonLinear Stress- Strain,”Proc.6th Int. Conf.Soil Mech.Vol. 2,pp. 83-87(1965).[5] Barden,L. and Berry,P.L.,“Consolidation of Normally Consolidated Clay,” Pro.Am.Soc.Civ Engrs, SM5 ,No.4481, pp.15-35 (1965)[6] Davis,E.H.and Raymond,G.P.,“A Non-Linear Theory of Consolidation,” Geotechnique,Vol 15,No.2,pp.161-173 (1965).[7] Gibson,R.E.,England,G.L.and Hussey,M.J.L.,“The Theory of One Dimensional Consolidation of Saturated Clay: I.Finite Non-Linear Consolidation of Thin Homogeneous Layers,” Geotechnique,Vol 17,pp.261-273(1967).[8] Gibson, R.E., Schiffman,R.L.and Cargill,K.W.,“The Theory of One Dimesi- onal Consolidation of Saturated Clay: Finite Non Linear Consolidation of Thick Homogeneous Layers,” Can.Geotech.J﹒,Vol 18,pp.280-293(1981).[9] Lei,H.C. and Chang,H.W.,“A List of Hodograph Transformations and Exactly Linearizable Systems,”The Chinese Journal of Mechanics,Vol 12,No.3, September (1996).[10] Poskitt, T.J.,“The Consolidation of Saturated Clay with Variable Perm- eability and Compressibility,” Geotechnique,Vol 19,No 2, pp. 234-252 (1969).[11] Feldkamp,J.R.,“Permeability Measurement of Clay Pastes by a Non-Linear Analysis of Transient Seepage Consolidation Tests,” Geotechnique,Vol. 39,No.1,pp.141-145(1989).[12] Znidarcic,D.,Schiffman,R.L.,Pane,V.,Croce,P.,Ko,H.Y.and Olsen,H.W.,“ The Theory of One Dimensional Consolidation of Saturated Clays: Constant Rate of Deformation Testing and Analysis,” Geotechnique,Vol 36,No 2,pp.227-237 (1986).[13] Feldkamp,J.R.,Swartzendruber,D.and Shainberg,I.,“Use of an Automated Ten- sion Cell to Measure Physical Properties of Consolidation System,”Col- loid Polymer Sci., Vol 261,pp. 277-285(1983).[14] Croce,P.,Pane,V.,Znidarcic, D.,Ko, H.Y.,Olsen,H.W. and Schiffman,R.L., “Evaluation of Consolidation Theories by Centrifugal Modelling,” Proc. Conf.Applications of Centrifugal Modelling to Geotechnical Design, Manch- ester University, pp. 380-401(1984).[15] Mikasa,M.and Takada, N.,“Selfweight Consolidation of Very Soft Clay by Centrifuge,” In Sedimentation /Consolidation Models ,pp.121-140(eds R.N.Yong and F.C. Townsend).New York :American Society of Civil Engineers (1984).[16] Schiffman,R.L.,Pane,V. and Gibson ,R.E.,“The Theory of OneDimensional Consolidation of Saturated Clays: Ⅵ an Overview of Nonlinear Finite Strain Sedimentation and Consolidation,”In Sedimentation / Consolidation Models,pp 1-29(eds R.N.Yong and F.C. Townsend).New York: American Society of Civil Engineers(1984).[17] Chakarbarty, J.,“Theory of Plasticity,”McGraw-Hill, New York(1987).[18] Hill,R.,“The Mathematical Theory of Plasticity,”Oxford University Press,London(1950).[19] Whiteam,G.B.,“Linear and Nonlinear Waves,” Wiley,New York(1974).[20] Courant,R. and Friedrich,K.O.,“Supersonic Flow and Shock Waves,” Springer-Verlag, New York(1948).[21] Courant,R.and Hibbert,D.,“Methods of Mathemmatical Physics(Vol. 2),” Inter-science Publishers, New York (1962).[22] Garabedian,P.R.,“Partial Differential Equation,”Chelsea Publishing Company,New York(1986).[23] M.R.Spiegel,p252,formula 128[24] Mikasa,M. and Takada,N., ”Selfweight Consolidation of Very Soft Clay by Centrifuge,” In Sedimentation /Consolidation Models, pp. 121-140(eds. R. N. Yong and F. C. Townsend),New York:American Society of Civil Engi- neers.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top