跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱世琪
研究生(外文):Shih-Chi Chu
論文名稱:溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究
論文名稱(外文):The Interactions between Phosphatidylcholine Vesicles and Ionic Surfactants : Temperature and PEG-Lipid
指導教授:曹□光
指導教授(外文):Heng-Kwong Tsao
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:62
中文關鍵詞:PEG-脂質溫度離子型界面活性劑微脂粒電導度
外文關鍵詞:ConductivityPEG-lipdliposomeionic surfactantstemperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究
學生:朱世琪 指導教授:曹□光
國立中央大學化學工程與材料工程研究所
中文摘要
由於微脂粒的特殊結構和性質,所以常被應用於當作控制釋放的載體,然而在體內會受到生物型的界劑影響,導致溶解現象發生。一般而言,界劑溶解微脂粒溶解過程可區分成微泡區、共存區、及混合微胞區。本論文將探討微泡區中,脂質和水相環境的界劑分佈平衡常數K。
本研究以擠壓法(extrusion)製備實驗所需要的微脂粒且皆不含有鹽類與緩衝溶液,並透過電導度量測來探討離子型界劑對微脂粒的溶解作用。所使用的六種界劑包含不同的疏水基鏈長 (C10-C16)及陰陽二種離子性頭基,並在三種溫度及添加PEG-脂質的條件下進行實驗。基於界劑溶解微脂粒的機制,界劑會嵌入脂雙層的行為,如同電荷會束縛於其中,因此界劑溶液含有微脂粒會造成電導度的下降,所以我們藉由電導的變化可決定界劑的K及Reb。所得到熱力學參數皆都能符合熱力學限制(J. Chem. Phys. 2001, 115, 8125)。
實驗結果發現K值會隨著溫度升高而下降,其標準化學勢(chemical potential)差異的級數為kT,並且隨著疏水基鏈長的增加而上升,這結果表示每一個在水相的界劑分子其平均作用能大於在脂質相的。改變溫度會使得界劑嵌入脂雙層勝於形成微胞,因此其溶解的能力會隨著K值上升而下降。對於特別的極性頭基,其分佈常數隨著鏈長增加而增加。根據實驗結果發現,符合熱力學的預期,界劑的每一個烷基內能級數為kT。
由於立體障礙力使得包含PEG —lipid的微脂粒其物理穩定性增加,從生物穩定性來看添加PEG —lipid的微脂粒減少了被嗜菌細胞吞噬的機會。在我們的研究系統中若添加1 %的PEG(2000)—lipid,則其粒徑比無添加PEG─lipid的微脂粒較小。此外,熱力學參數K和Reb皆上升。實驗結果顯示添加PEG-lipid可降低界劑在脂質相的平均自由能,導致得到較大的平衡常數,且提升微脂粒抵抗界劑溶解的能力。因此我們認為添加PEG-lipid可提供另一個穩定的機制。

The Interactions between Phosphatidylcholine Vesicles and Ionic Surfactants:
Effects of Temperature and PEG-Lipid
Student: Shis-Chi Chu Advisor: Heng-Kwong Tsao
Department of Chemical and Materials Engineering
National Central University
ABSTRACT
Liposomes are widely used as drug carriers due to their special structure and properties. Nevertheless, the in vivo stability of liposomes poses limitations on their applications. For example, an enough amount of biosurfactant can solubilize liposomes. In general, liposome solubilization can be described by the three-stage hypothesis, including vesicular regime, vesicle-micelle coexistence, and mixed micellar regime. In this thesis, we focus on the first stage and study the partition of ionic surfactant between the bilayer phase and the aqueous phase.
Phosphatidylcholine vesicles are prepared by the extrusion method without addition of buffer and salt. The bilyer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of of six ionic surfactants are then determined by conductivity measurements, which are based on the fact the vesicle acts as a trap of charge carriers. The main purpose of the thesis is to investigate the effects of temperature and PEG-lipid on the partition coefficient. The experimental data can be well represented by the simple thermodynamic model and the thermodynamic parameters satisfy the thermodynamic consistency.
The partition coefficient is found to decline with increasing temperature. This consequence indicates that the mean interaction energy per surfactant molecule in the aqueous phase mw0 is greater than that in the bilayer mb0. The difference of the mean interaction energy is O(kT) and rises as the chain length is increased. Because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles, the solubilizing ability Reb also decreases in accord with the partition coefficient. For a specified hydrophilic head, we observe that the partition coefficient grows with the alkyl chain length. According to our experimental results, the increment of the mean interaction energy per alkyl group is O(kT), which agrees with the thermodynamic prediction.
It is known that the physical stability of a liposome containing a few PEG-lipid is enhanced due to the steric repulsion. Biologically, a stealth liposome is also obtained because PEG-lipid provides the opportunity of escaping from macrophage uptake. In this study, a liposome containing 1% PEG (2000)-lipid is prepared. In comparison with liposomes without PEG-lipid, the mean radius of such liposomes is smaller. In addition, the thermodynamic parameters K and Reb are increased. This result indicates that PEG-lipid lowers the mean interaction energy in the bilayer phase and therefore leads to a higher partition coefficient. However, the ability of resisting surfactant solubilization is also enhanced. Therefore, we conclude that addition of PEG-lipid provides another stability mechanism.


Abstract (in Chinese)……………………………………….Ⅰ
Abstract (in English)………………………………………..Ⅲ
Acknowledgment……………………………………………Ⅴ
Content………………………………………………………Ⅵ
Table captions………………………………………………..Ⅷ
Figure captions………………………………………………ⅩⅠ
Chapter 1 General Introduction of Liposomes
1-1 Introduction …………………………….…………………..1
1-2 Lipid ………………………………………………….…….3
1-3 Liposome …………………………………………………...7
1-4 Surfactants………………………………………………….11
1-5 PEG-lipid…………………………………………………...15

Chapter 2 Interaction of Liposomes with Surfactants
2-1 Solubilization model. ……………………………………..16
2-2 Conductivity measurements of Dw and Db. ……………….18
Chapter 3 Experiment Section
3-1 Chemicals …………………………………………………24
3-2 Equipments ………………………………………………..26
3-2-1 Conductometry …………………………………….27
3-2-2 Dynamic light scatter ………………………………30
3-3 Methods
3-3-1 Preparation of liposomes …….……….…………….33
3-3-2 Diameter measurements. …………………………...33
3-3-3 Conductivity measurements………………………...33
Chapter 4 Results and Discussion
4-1 Effect of temperature………………………………………34
4-2 Effect of PEG-lipid ………………………………………..38
Chapter 5 Conclusions …………………………….…………40
Reference…………………………….…………………………58


Reference1. Bangham A. D., M. M. Standish, and J.C.Watkins. 1965. Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids. Journal of Molecular Biology. 13: 238-252.2. Frezard F., A. Garniersuillerot. 1998. Permeability of Lipid Bilayer to Anthracycline Derivatives. Role of the Bilayer Composition and of the Temperature. Biochim. Biophys. Acta. -Lipids and Lipid Metabolosm, 1389: 13-22.3. Chang R., S. Nir, and F. Poulain. 1998. Analysis of Binding and Membrane Destabilization of Phospholipid Membranes by Surfactant Apoprotein B. Biochim. Biophys. Acta. - Biomembranes, 254:1371-.4. Lasic D., D. Needham.1995. The “Stealth” Liposome: A Prototypical Biomaterial. Chemical Reviews, 95: 2601-.5. Trevino L., F. Frezard, J. Rolland, M. Postel, and J. Riess. 1994. Novel Liposomes Systems Based on the Incorporation of (perfluoroalkyl) Alkenes (FmHnE) into the Bilayer of Phospholipid Liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 88: 223-.6. Jones, M. N. and D. Chapman. 1995. Micelles, Monolayers, and Biomembranes. Wiley-Liss, New York.7. N. Albena, Nikolova, Malcol N. Jones. 1998. Phospholipid Free Thin Liquid Films with Grafted Poly(ethylene glycol)-2000: Formation, Interaction Forces and Phase States. Biochem. Biophys. Acta, 1372:237-243.8. Markus J., and K. Edwsrds. 2000. Interactions between Nonionic Surfactants and Sterically Stabilized Phophatidyl Choline Liposomes. Lagmuir, 16: 8632-8642.10. Lasic D., 1993. Liposome: From Physics to Applications. Elsevier, New York.11. Janich M., J. Lange, H. Graener, and R. Neubert. 1998. Extended light scattering investigations on Dihydroxy bile salt micelles in low-salt aqueous solutions. J. Phys. Chem. B. 102: 5957-5962.12. Garidel P., A. Hildebrand, R. Neubert, and A. Blume. 2000. Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimrtey. Langmuir. 16: 5267-5275.13. Gouin. S. and X.X. Zhu. 1998. Fluorescence and NMR Studies of the Effect of a Bile Acid Dimer on the Micellization of Bile Salts. Langmuir. 14: 4025-4029.14. Jover, A. F. Meijide, E. Rodriguez Nunez, and J. Vazquez Tato. Aggregation Number for Sodium Dexycholate from Steady-State and Time-Resolved Fluorescence. Langmuir. 13: 161-164.15. Bivas I., M. Winterhalter, P. MELEARD and P. BOTHOREL. 1998. Elasticity of bilayer containing PEG lipids. Europhys. Lett. 41: 261-266.16. Belsito S., Rosa B. and Liugi S. 1998. Sterically stabilized liposomes of DPPC/DPPE-PEG: 2000. A spin label ESR and spectrophotometric study. Biophysical Chemistry. 75: 33-43.17. Johnsson M. 2001. Sterically Stabilized Liposomes and Related Lipid Aggregates. Acta University Upsaliensis.18. Lichtenberg D. 1985. Characterization of the solubilization of lipid bilayers by surfactants. Biochim. Biophys. Acta. 821: 470-478.19. Kragh-Hansen U., M. le Maire, and J. V. Moller. 1998. The Mechanism of Detergent Solubilization of Liposomes and Pretein-Containing Membranes. Biophys. J. 75: 2932-2946.20. Almog S. T., Kushnir, S. Nir, D. Lichtenberg. 1986. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry. 25:2597-2605.21. Almog, S. B. J. Litman, W. Wimley, J. Cohen, E. J. Wachtel, Y. Barenholz, A. Ben-Shaul, and D. Lichtenberg.1990. States of aggregation and phase transformations in mixtures of phosphatidylcholine and octyl glucoside. Biochemistry. 29:4582-4592.22. Edwards K. and M. Almgren. 1991. Solubilization of lecithin vesicles by C12E8 structural transitions and temperature effects. J. Colloid Interface Sci. 147:1-21.23. Schurtenberger P., N. Mazer, and W. Kanzig. 1985. Micelle to vesicle Transition in Aqueous Solutions of Bile salt and Lecithin. J. Phys. Chem. 89: 1042-1049.24. Maza A. de la and J.L. Parra. 1995. Solubilizing effects caused by alkyl pyridinium surfactants in phosphatidylcholine liposomes. Chemistry and Physics of lipids. 77: 79-87.25. Hunter R. J. 1993. Introduction to Modern Colloidal Science. Oxford, University Press Inc., New York. 26. Heeklotz H. and J. Seelig. 2000. Correlation of Membrane/Water Partition Coefficients of Detergents with the Critical Micelle Concentration. Biophy. J. 78: 2432-2440.27. Israelachvili J., 1992. “Intermolecular and Surface Forces”, Academic Press, London.28. Tsao H. K., and Tzeng W. L. 2001. The Interactions Between Ionic Surfactants and Phosphatidylcholine Vesicles: Conductometry.. J. Chem. Phys. 115: 8125-8132.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.趙琪(2001),「資源控制與交易成本海外子公司控制機制之影響-台灣企業與大陸子公司之實證研究」,中山管理評論,第九卷第一期,頁87-109。
2. 16.曾紀幸、司徒達賢與于卓民(1999),「多國籍企業網路組織類型管理機制選擇之關係-在台外商公司之產品交易實證研究」,管理學報,第15卷第1期,頁1-26。
3. 15.曾怡仁、張惠玲(2000),「區域整合理論的發展」,問題與研究,第39卷第8期。
4. 10.黃登興、徐茂炫(1997),「殖民關係與貿易型態在台灣日據時期的驗證」,經濟論文叢刊,第25卷第3期,頁369-399。
5. 3.林志宏、賴其勛、蔡翠旭與簡倍祥(2001),「台灣創投業之控制策略及其先行因子之研究」,科技管理學刊,第六卷第一期,頁71-103。
6. 蘇賢錫譯,各國環境教育實施現況,環境教育季刊2期,台北市(1990)pp.46-49。
7. 鄭顯榮、范德媛,推行辦公室環保與社會環境教育,環境教育季刊43期,台北市(2000)pp.35-41。
8. 蔡慧敏,永續減災的環境教育,環境教育季刊41期,台北市(2000)pp.63
9. 楊冠政,聯合國環境教育計畫,環境教育季刊2期,台北市(1990)pp.53
10. 楊冠政,環境教育概述(下),環境教育季刊2期,台北市(1990)pp.4-8。
11. 楊冠政,環境教育概述(上),環境教育季刊1期,台北市(1990)pp.6-17。
12. 楊秋霖,森林遊樂的新趨向--生態旅遊,現代育林(1994)10(1),pp.6
13. 黃朝恩,環境倫理的演變,環境教育季刊41期,台北市(2000)pp.57-62。
14. 黃朝恩,人與環境的互動關係,環境教育季刊2期,台北市(1990)pp.26
15. 張祖恩、高翠霞,環境保育與倫理,環境教育季刊3期, 台北市(1990)pp.16-18。