跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐新榮
研究生(外文):Hsin-Jung Ou
論文名稱:乙烯在甲苯、冰片烯及COC混合溶液之溶解度量測與關聯
論文名稱(外文):Measurement and correlation of the solubility of ethylene in toluene, norbornene, and COC mixtures
指導教授:李亮三
指導教授(外文):Liang-Sun Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:74
中文關鍵詞:乙烯甲苯冰片烯溶解度
外文關鍵詞:ethylenetoluenenorborneneCOCsolubilityPR EOS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

乙烯-冰片烯共聚物為新世代工程塑膠,環烯烴共聚物(COC),的一種,在其生產程序中,乙烯在甲苯及冰片烯混合溶液中的溶解度將會影響COC中乙烯基團比例,因此我們欲探討不同操作條件下,乙烯的溶解度情形,並使用熱力學模式進行關聯,以增加對未知條件下之預測能力。
本研究主要探討不同溫度、壓力下,乙烯在甲苯、冰片烯及COC混合溶液之溶解度情形。實驗溫度為323.15 K、373.15 K及423.15 K,壓力範圍5bar至25bar,混合溶液中冰片烯含量為0wt%至85wt%,COC含量為0wt%至28%。實驗方法採用壓力下降法,利用平衡槽之壓力變化判斷系統是否達平衡,為靜態式平衡法。實驗結果發現乙烯在上述混合溶液中的溶解度將隨壓力上升而增加,但隨溫度上升而下降;不同溫度下,甲苯與冰片烯混合溶液組成比例的不同對乙烯溶解度的影響情形將有所不同;混合溶液中COC的含量增加時,將會使乙烯的溶解度下降。
對於熱力學模式的關聯,我們選用Peng-Robinson 狀態方程式(PR EOS)並配合凡得瓦單一流體(vdW1)混合律及Zhong-Masuoka (Z-M)混合律兩種,計算方式採用泡點壓力計算法,進行數據關聯,以求得最佳化之雙成分交互作用參數。為了進行其他溫度的預測,我們將關聯所得的交互作用參數以溫度的線性關係表示,對於乙烯與甲苯雙成分系統,vdW1及Z-M混合律的交互作用參數與溫度具優異的線性關係;乙烯、甲苯與冰片烯三成分系統,vdW1混合律的交互作用參數隨溫度變化情形較難預測,而Z-M混合律的交互作用參數則是與溫度呈線性關係;乙烯、甲苯、冰片烯與COC四成分系統,vdW1及Z-M混合律的交互作用參數與溫度的關係較難預測。我們以PR EOS配合vdW1及Z-M混合律進行關聯,結果皆相當精確,AAD值在5%內。


Ethylene-norbornene copolymer is one of the new high quality engineering plastics, polycyclic olefin copolymer (COC). In the producing process, attaching of ethylene group in COC is affected by the solubility of ethylene in toluene and norbornene mixtures. So this study was measuring the solubility of ethylene at different conditions, and correlating the solubility by thermodynamic model. The correlation parameters will be used to predict the solubility of ethylene of conditions when the experimental data are not available.
In this study, the solubility of ethylene at various temperatures (323.15 K-423.15 K), pressures (5bar-25bar), concentration of norbornene (0-85wt%), and concentration of COC (0-40wt%) in toluene were measured by a pressure decaying method. The results show that the solubility of ethylene increases with increasing pressure, decreases with increasing temperature. The solubility of ethylene in mixtures is affected by the composition of mixtures. When concentration of COC in mixtures was increased, the solubility of ethylene in mixtures will be decreased.
The solubility data were correlated by the Peng-Robinson equation of state (PR EOS) with the van der Waals one-fluid (vdW1) and the Zhong-Masuoka (Z-M) mixing rules using bubble pressure calculation method with the binary interaction parameters, Lij or kij. For predicting the solubility of ethylene in mixtures at other temperatures, the binary interaction parameters were showed linear relationship with temperature. For ethylene and toluene binary system, the binary interaction parameters of vdW1 and Z-M mixing rules curve very linearly dependent on temperature. For ethylene, toluene, and norbornene ternary system, the binary interaction parameters of Z-M mixing rule have very good linear relationship with temperature, but not vdW1 mixing rule. For ethylene, toluene, norbornene, and COC quaternary system, the linear relationship with temperature is not valid. Finally, PR EOS with vdW1 or Z-M mixing rules was used to correlate the experimental results with good accuracy.


中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅶ
符號說明 Ⅸ
第一章 緒論 1
1.1 前言 1
1.2 環烯烴共聚物(COC) 1
1.3 研究動機 2
第二章 熱力學理論及模式 4
2.1 汽液相平衡準則 4
2.2汽液相平衡計算 4
2.3 逸壓係數 5
2.4 狀態方程式 5
2.4.1 單分子型狀態方程式(EOS for Simple Molecules) 6
2.4.2 鏈狀型狀態方程式(EOS for Chain Molecules) 7
2.4.2結合型狀態方程式(EOS for Associating Molecules) 7
2.5 混合律 8
2.5.1 單參數凡得瓦單一流體混合律(vdW1) 8
2.5.2 Wong-Sandler(W-S)混合律 9
2.5.3 Zhong-Masuoka(Z-M)混合律 10
第三章 文獻回顧 12
3.1 輕質氣體與溶劑雙成分系統 12
3.2 輕質氣體與高分子雙成分系統 12
3.3 溶劑與高分子雙成分系統 14
3.4 輕質氣體、溶劑與高分子三成分系統 17
第四章 實驗部份 18
4.1 實驗藥品 18
4.2 實驗方法 18
4.2.1 裝置單元介紹 19
4.2.2 實驗步驟 20
4.3 檢量線製作 20
4.3.1 乙烯檢量線製作 21
4.3.2 甲苯檢量線製作 21
4.3.3 甲苯-冰片烯檢量線製作 21
4.4 乙烯溶解度之計算 21
4.5 可靠性試驗 23
4.6 正式實驗 23
4.7 關聯模式 23
4.7.1 高分子參數之求得 24
4.7.2 氣液相平衡關聯 25
第五章 結果與討論 26
5.1 檢量線的擬合 26
5.1.1 乙烯檢量線擬合 26
5.1.2 甲苯檢量線擬合 26
5.1.3 甲苯-冰片烯檢量線擬合 26
5.2 可靠性試驗 27
5.3 正式實驗 27
5.3.1 乙烯與甲苯之雙成分系統 27
5.3.2 溶解度的經驗關聯式 28
5.3.3乙烯、甲苯與冰片烯之三成分系統 28
5.3.4乙烯、甲苯、冰片烯與COC之四成分系統 30
第六章 結論 32
參考文獻 33
圖 40
表 53
Appendix A. Equation of State 65
Appendix B. GCVOL method 68
Appendix C. Development of solubility model 71


Atiqullah, M., H. Hammawa, and H. Hamid, “Modeling the Solubility of Ethylene and Propylene in a Typical Polymerization Diluent:Some Selected Situations,” Eur. Polym. J., 1998, 34, pp.1511-1520Beaton, C. F., and G. F. Hewitt, “Physical Property Data for the Design Engineer,” Hemisphere, 1989Behme, S., G. Sadowski, W. Arlt, “Modeling of the Spearation of Polydisperse Polymer Systems by Compressed Gases,” Fluid Phase Equil., 1999, 158-160, pp.869-877Benzaghou, S., J. P. Passarello, and P. Tobaly, ”Predictive Use of a SAFT EOS for Phase Equilibria of Some Hydrocarbons and Their Binary Mixtures,” Fluid Phase Equil., 2001, 180, pp.1-26Beret, S., and J. M. Prausnitz, “Perturbed Hard-Chain Theory:An Equation of State for Fluids Containing Small or Large Molecules,” AIChE J., 1975, 21, pp.1123-1132 Bergström, C. H.,and J. V. Seppälä, “Effects of Polymerization Conditions When Making Norbornene-Ethylene Copolymers Using the Metallocene Catalyst Ethylene Bis(indenyl) Zirconium Dichloride and MAO to Obtain High Glass Transition Temperature,” J. App. Polym. Sci., 1997, 63, pp.1063-1070Bogdanović, V. Ž., A. Ž. Tasić, and B. D. Djordjević, “Inversion Phenomena of Ethylene Solubility in Polyethylene,” J. App. Polym. Sci., 1990, 41, pp.3091-3095Chapman, W. G., K. E. Gubbins, G. Jackson, and M. Radosz, “SAFT:Equation-of-State Solution Model for Associating Fluids,” Fluid Phase Equil., 1989, 52, pp. 31-38Chapman, W. G., K. E. Gubbins, G. Jackson, and M. Radosz, “New Reference Equation of State for Associating Liquids,” Ind. Eng. Chem. Res., 1990, 29, pp.1709-1721 Chang, M. Y., and B. I. Morsi, “Mass Transfer Characteristics of Gases in Aqueous and Organic Liquids at Elevated Pressure and Temperatures in Agitated Reactors,” Chem. Eng. Sci., 1991, 46, pp.2639-2650Elbro, H. S., A. Fredenslund, and P. Rasmussen, “Group Contribution Method for the Prediction of Liquid Densities as a Function of Temperature for Solvents, Oligomers, and Polymers,” Ind. Eng. Chem. Res., 1991, 30, pp.2576-2585Folie, B., C. Gregg, G. Luft, and M. Radosz, “Fluid Equilibria of Poly(Ethylene-co-Vinyl Acetate) Copolymers in Subcritical and Supercritical Ethylene and Ethylene-Vinyl Acetate Mixtures,” Fluid Phase Equil., 1996, 120, pp.11-37 Fu, Y. H., and S. I. Sandler, “A Simplified SAFT Equation of State for Associating Compounds and Mixtures,” Ind. Eng. Chem. Res., 1995, 34, pp.1897-1909Hasch, B. M., and M. A. McHugh, “Phase Behavior of the Ethylene-Methyl Acrylate System,” Fluid Phase Equil., 1991, 64, pp.251-261Honnell, K. G., and C. K. Hall, “A New Equation of State for Athermal Chains,” J. Chem. Phys., 1989, 90, pp.1841-1855Huang, S. H., and M. Radosz, “Equation of State for Small, Large, Polydisperse, and Associating Molecules,” Ind. Eng. Chem. Res., 1990, 29, pp.2284-2294Huang, S. H., and M. Radosz, “Equation of State for Small, Large, Polydisperse, and Associating Molecules:Extension to Fluid Mixture,” Ind. Eng. Chem. Res., 1991, 30, pp.1994-2005Kalospiros, N. S. , and D. Tassios, “Prediction of Vapor-Liquid Equilibria in Polymer Solutions Using an Equation of State/Excess Gibbs Free Energy Model,” Ind. Eng. Chem. Res., 1995, 34, pp.2117-2124King, M. B., D. A. Alderson, F. H. Fallah, D. M. Kassim, K. M. Kassim, J. R. Sheldon, and R. S. Mahmud, “Some Vapour/Liquid and Vapour/Solid Equilibrium Measurements of Releaevance for Supercritical Extraction Operations, and Their Correlation,” in Paulaitis, M. E., J. M. L. Penninger, R. D. Gray, and J. P. Davidson (Eds.),”Chemical Engineering at Supercritical Fluid Conditions,” Ann Arbor Science, 1983, pp.31-80Kontogeorgis, G. M., V. I. Harismiadis, A. Fredenslund, and D. P. Tassios, “Application of van der Waals Equation of State to PolymersⅠ:Correlation,” Fluid Phase Equil., 1994, 96, pp.65-92Laugier, S., D. Richon, and H. Renon, “Vapor-Liquid Equilibrium of Hydrogen-2,2,4-Trimethylpentane and Hydrogen-Toluene Systems at High Pressures and Temperatures,” J. Chem. Eng. Data, 1978, 25, pp.339-340Li, J., Z. Tekie, T. I. Mizan, B. I. Morsi, E. E. Maier, and C. P. P. Singh, “Gas-Liquid Mass Transfer in a Slurry Reactor Operating Under Olefinic Polymerization Process Conditions,” Chem. Eng. Sci., 1996, 51, pp.549-559Liu, J. L., and D. S. H. Wong, “Application of Wong-Sandler Mixing Rules to Polymer Solutions,” Fluid Phase Equil., 1996, 117, pp.92-99Louli, V., and D. Tassios, “Vapor-Liquid Equilibrium in Polymer-Solvent Systems With a Cubic Equation of State,” Fluid Phase Equil., 2000, 168, pp.165-182Michelsen, M. L., “A Method for Incorporating Excess Gibbs Energy Models in Equation of State,” Fluid Phase Equil., 1990, 60, pp.47-58Mizan, T. I., J. Li, B. I. Morsi , M. Y. Chang, E. Maier, and C. P. P. Singh, “Solubilities and Mass Transfer Coefficients of Gases in Liquid Propylene in Surface-Aeration Agitated Reactor,” Chem. Eng. Sci., 1994, 49, pp.821-830Morris, W. O., P. Vimalchand, and M. D. Donohue, “The Perturbed-Soft-Chain Theory:An Equation of State Based on The Lennard-Jones Potential,” Fluid Phase Equil., 1987, 32, pp.103-115Ndiaye, P. M., C. Dariva, J. V. Oliveira, F. W. Tavares, “Phase Behavior of Isotactic Polypropylene/C4-Solvents at High Pressure. Experimental data and SAFT Modeling,” J. Supercritical Fluids, 2001, 21, pp.93-103Ng, H. J., and D. B. Robinson, “Equilibrium Phase Properties of the Toluene-Carbon Dioxide System,” J. Chem. Eng. Data, 1978, 23, pp.325-327Ohzono, M., Y. Iwai, and Y. Arai, “Correlation of solubilities of Hydeocarbon Gases and Vapors in Molten Polymers Using Perturbed-Hard-Chain Theory,” J. Chem. Eng. Japan, 1984, 17, pp.550-553Orbey, N., and S. I. Sandler, “Vapor-Liquid Equilibrium of Polymer Solutions Using a Cubic Equation of State,” AIChE J., 1994, 40, pp.1203-1209 Orbey, H., C. C. Chen, and C. P. Bokis, “An Extension of Cubic Equations of State to Vapor-Liquid Equilibria in Polymer-Solvent Mixtures, Fluid Phase Equil., 1998, 145, pp.169-192Patel, N. C., and A. S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., 1982, 37, pp463-473Peng, D. Y., and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 1976, 15, pp.59-64Perry, R. H., and D. Green, “Perry’s Chemical Engineering’s Handbook, 6th,” McGraw-Hill, 1984 Pretel, E. J., and R. P. Danner, “Vapor-Liquid Equilibrium Properties for Polymer-Solvent Mixtures Using the Perturbed Soft Chain Theory,” Fluid Phase Equil., 1996, 115, pp.1-23Redlich, O., and J. N. S. Kwong, “On the Thermodynamics of Solutions. Ⅴ:An Equation of State. Fugacities of Gaseous Solutions,” Chem. Rev., 1949, 44, pp.233-244 Reid, R. C., J. M. Prausnitz, and B. E. Poling, “The Properties of Gases and Liquids , 4th, Appendix A:Property Data Bank,” McGraw-Hill, 1987Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 1. Kinetics of the Ethene-Norbornene Copolymeerization Using the [(Isopropylidene)(η5-inden-1-ylidene-η5-cyclopentadienyl)]zirconium Dichloride/Methylaluminoxane Catalyst,” Macromolecules, 1998, 31, pp.4669-4673Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 2. Comparative Study of Different Metallocene- and Half-Sandwich /Methylaluminoxane Catalysts and Analysis of the Copolymer by 13C Nuclear Magnetic Resonance Spectroscopy,” Macromolecules, 1998, 31, pp.4674-4680Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 3. Copolymerization Parameters and Copolymerization Diagrams,” Macromolecules, 1998, 31, pp.4681-4684Ruchatz, D., and G. Fink, “Ethene-Norbornene Copolymer Using Homogenous Metallocene and Half-Sandwich Catatlyst : Kinetics and Relationships between Catalyst Structure and Polymer Structure. 4. Development of Molecular Weights,” Macromolecules, 1998, 31, pp.4684-4686Sandler, S. I., “Chemical and Engineering Thermodynamics, 3rd,” Wiley, 1999 Saraiva, A., G. M. Kontogeorgis, V. I. Harismiadis, A. Fedenslund, and D. P. Tassios, “Application of van der Waals Equation of State to PolymersⅣ:Correlation and Prediction of Lower Critical Solution Temperatures for Polymer Solutions ,” Fluid Phase Equil., 1996, 115, pp.73-93Sato, Y., K. Fujiwara, T. Takikawa, Sumarno, S. Takishima, and H. Mausoka, “Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene, and Polystyrene underHigh Pressures and Temperatures,” Fluid Phase Equil., 1999, 162, pp.261-276Sato, Y., M. Yurugi, K. Fujiwara, S. Takishima, and H. Mausoka, “Solubilities of Carbon Dioxide and Nitrogen in Polystyrene under high Temperature and Pressure,” Fluid Phase Equil., 1996, 125, pp.129-138Simnick, J. J., H. M. Sebastian, H. M. Lin, and K. C. Chao, “Solubility of Hydrogen in Toluene at Elevated Temperatures and Pressures,” J. Chem. Eng. Data, 1978, 23, pp.339-340Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state,” Chem. Eng. Sci., 1972, 27, pp.1197-1203 Stryjek, R., and J. H. Vera, “PRSV:An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures,” Can. J. Chem. Eng., 1986, 64, pp.323-333Tasibanogiannis, I. N., K. S. Kalospiros, and D. P. Tassios, “Extension of the GCVOL Method and Appliciation to Some Complex Compounds,” Ind. Eng. Chem. Res., 1994, 33, pp.1641-1643Tsai, J. C., M. Tang, Y. P. Chen, “Prediction of VLE of Polymer Solutions by GFD Equation of State,” Fluid Phase Equil., 1999, 158-160, pp.303-312Wei, Y. S., and R. J. Sadus, “Equations of State for Calculation of Fluid-Phase Equilibria,” AIChE J., 46, pp.169-196, 2000 Wong, D. S. H., and S. I. Sandler, “A Theoretically Correct Mixing Rule for Cubic Equation of State,” AIChE J., 1992, 38, pp.671-680Wu, C. S., and Y. P. Chen, “Calculation of Vapor-Liquid Equilibria of Polymer Solution Using the SAFT Equation of State,” Fluid Phase Equil., 1994, 100, pp. 103-119Wu, C. S., M. Tang, and Y. P. Chen, “Application of GFD EOS on VLE Calculations of Polymer Solutions,” Fluid Phase Equil., 1996, 117, pp.26-32Xiong, Y. , and E. Kiran, “Comparison of Sanchez-Lacombe and SAFT Model in Predicting Solubility of Polyethylene in High-Pressure Fluids,” J. App. Polym. Sci., 1995, 55, pp.1805-1818Yethiraj, A., and C. K. Hall, “Generalized Flory Equation of State for Square-Well Chains,” J. Chem. Phys., 1991, 95, pp.8494-8506Zhong C., and H. Masuoka, “A New Mixing Rule for Cubic Equation of State and its Application to Vapor-Liquid Equilibria of Polymer Solutions,” Fluid Phase Equil., 1996a, 123, pp.59-69Zhong C., and H. Masuoka, “Prediction of Henry’s Constants for Polymer-Containing Systems using the SRK Equation of State Coupled with a New Modified UNIFAC Model,” Fluid Phase Equil., 1996b, 126, pp.1-12Zhong C., and H. Masuoka, “Modeling of Gas Solubilities in Polymers with Cubic Equation of State,” Fluid Phase Equil., 1998, 144, pp.49-57洪士民, “高溫高壓下二氧化碳-正烷基梭酸雙成分系統之氣液相平衡,” 國立成功大學化學工程研究所碩士論文, 台南, 民國86年黃辰寶, “高溫高壓下之氣液相平衡─甲烷與重正烷烴之雙成分系統,” 國立成功大學化學工程研究所碩士論文, 台南, 民國79年陳瑞堂, “新立方型微擾硬鏈狀態方程式,” 國立台灣工業技術學院化學工程技術研究所博士論文, 台北, 民國85年楊思廉, “工業化學概論, 第十三章 塑膠工業,” 高立圖書, 民國71年鄭孟勳, “以有機茂金屬觸媒合成丙烯-原乙烯之COC共聚物及其物性探討,” 國立中央大學化學研究所碩士論文, 中壢, 民國89年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top