跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文建
研究生(外文):Wen-Jian Hwang
論文名稱:利用多塔變壓吸附法回收及濃縮煙道氣中二氧化硫之模擬
論文名稱(外文):Simultanion of Recovering and Concentrating SO2 from Flue Gas by Multi-bed Pressure Swing Adsorption
指導教授:周正堂周正堂引用關係
指導教授(外文):Cheng-Tung Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:二氧化硫酸雨現象真空變壓吸附模擬實驗計畫法
外文關鍵詞:design of experimentacid-rain phenomenasulfur dioxidevacuum swing adsorptionsimulation.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

動力工廠所排放出含硫量過高之氣體是造成酸雨現象的主要原因。使用變壓吸附法濃縮及回收煙道氣中二氧化硫,使之再利用,為解決問題方法之一。近來這方面的研究已成為處理這類工廠廢氣之首要。
本研究主要利用模擬方式,採用三塔六步驟真空變壓吸附程序,處理進料為0.5﹪SO2,17﹪CO2,其餘為N2之煙道氣,吸附劑採用XAD-16(NO-treated)。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式,因吸附劑顆粒大,故可忽略吸附塔內壓力降。
此一新程序可將濃度為0.5﹪SO2濃縮至12.54%,回收率達100%;本研究並探討各操作參數(諸如:各個步驟操作時間、進料壓力與沖洗比等等)對程序效能的影響,且利用直交表之實驗計畫法對此製程做模擬結果分析,可由結果得到準確的預測模式,其與模擬結果相比較,準確度約98%。


The major cause for acid-rain phenomena is the emission of SO2 from power plants that burn fossil flues. It is all-important that the recovery and concentration of SO2 from flue gas in solving SO2 problem by pressure swing adsorption.
The study is on a three-bed six-step vacuum swing adsorption process using XAD-16 with NO-treated. It was performed simulation for bulk separation of SO2/CO2/N2 (0.5/17/82.5 vol %) system. This study used the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation.
The 0.5%SO2 in the feed could be concentrated to 12.54% in the product with a recovery of 100% by this study. The effects of three operating variables such as adsorption pressure, P/F ratio, steps time were investigated on the performance of this study.
The design of experiment was used in analysis of simulation process and could get predictive polynomial function of result. The accuracy of function which descries performance of this study is near to 98%.


目 錄
目錄Ⅰ
表目錄Ⅳ
圖目錄Ⅵ
第一章 緒論1
第二章 簡介及文獻回顧3
2.1 變壓吸附之簡介3
2.1.1 變壓吸附基本原理3
2.1.2吸附劑及其選擇性5
2.1.3 變壓吸附典型步驟6
2.2 文獻回顧8
2.2.1 PSA程序之發展與改進8
2.2.2 理論之回顧11
2.2.3 PSA製程在回收氣體污染物的應用13
第三章 理論16
3.1 基本假設17
3.2 統制方程式18
3.3 吸附平衡關係式22
3.4 參數推導29
3.4.1 軸向擴散係數29
3.4.2 管壁的熱傳係數30
3.5 起始條件與邊界條件31
3.6 求解的方法32
3.6.1 閥公式32
3.6.2 求解步驟33
第四章 製程描述35
4.1 程式驗證37
4.2 三塔六步驟製程38
4.3 常數與操作條件42
第五章 結果討論與數據分析48
5.1 模擬結果與驗證48
5.2 三塔六步驟變壓吸附之模擬51
5.2.1沖洗比的影響51
5.2.2進料壓力的影響55
5.2.3 T1時間的影響58
5.2.4 T2時間的影響63
5.2.5 T3時間的影響67
5.3 模擬數據分析70
5.3.1因子水準選定與直交表之配置70
5.3.2分析與回歸估計73
5.4 模擬製程之效率與實驗實驗設計分析總結83
第六章 未來方向 85
符號說明86
參考文獻88
附錄A 流速之估算方法95
附錄B 利用直交表之實驗設計範例解析99
附錄C 環保法規111
附錄D預測模式所得之製程結果112
表目錄
表4.1吸附塔與吸附劑特性43
表 4.2 XAD-16(NO-treated)參數....................................................... 44
表4.3氣體分子擴散係數45
表4.4進料組成與操作狀態45
表4.5 Skarstrom cycle 與三塔六步驟程序之步驟時間...................46
表4.6三塔操作流程循環順序…47
表5.1 驗證49
表5.2 驗證49
表5.3 沖洗比對SO2濃度與回收率之影響51
表5.4 進料壓力對SO2濃度與回收率之影響55
表5.5 T1時間對SO2濃度與回收率之影響58
表5.6 T2時間對SO2濃度與回收率之影響63
表5.7 T3時間對SO2濃度與回收率之影響67
表5.8 因子之水準70
表5.9 product SO2濃度與回收率之直交表..................................... 71
表5.10 waste SO2回收率之直交表.................................................. 72
表5.11 product SO2濃度之ANOVA表....................................... 73
表5.12 product SO2回收率之ANOVA表..................................... 74
表5.13 waste SO2濃度之ANOVA表.............................................75
表5.14 本研究與文獻上製程結果之比較.........................83
表B-1平方和配適與直交多項式所需公式(無交互).....108
表B-2直交多項式係數..............................................109
表B-3重要因子水準濃度值.......................................109
圖目錄
圖3.1 電腦程式之求解流程圖34
圖4.1 SO2與CO2在吸附劑 XAD-16(NO-treated)上的吸附平衡
曲線圖.........................................36
圖4.2 Skarstrom Cycle……………………………………..37
圖4.3三塔循環步驟圖40
圖4.3三塔循環步驟圖(續)41
圖5.1-1為改變沖洗比之模擬與文獻之結果比較圖(驗證)…...50
圖5.2-1不同沖洗比下,SO2濃度與回收率的變化曲線圖........ 53
圖5.2-2沖洗步驟改變沖洗比後,塔內SO2濃度分佈.............54
圖5.2-3不同進料壓力下,SO2濃度與回收率的變化曲線圖.56
圖5.2-4改變進料壓力於高壓吸附步驟結束後,塔內SO2濃度分佈.................................................................. 57
圖5.2-5 改變T1時間,SO2濃度與回收率之變化曲線圖..........59
圖5.2-6改變T1時間於高壓吸附步驟結束後,塔內SO2濃度分佈.................................................................. 60
圖5.2-7 改變T1時間於同向減壓步驟結束後,塔內SO2濃度分佈....................................................... 61
圖5.2-8第一階段高壓吸附、第二階段高壓吸附之塔內流量… 62
圖5.2-9 改變T2時間,SO2濃度與回收率之變化曲線圖........64
圖5.2-10改變T2時間於高壓吸附步驟結束後,塔內SO2濃度分佈................................... 65
圖5.2-11 改變T2時間於沖洗步驟結束後,塔內SO2濃度分佈.................................................... 66
圖5.2-12 改變T3時間,SO2濃度與回收率之變化曲線圖.......68
圖5.2-13改變T3時間於沖洗步驟結束後,塔內SO2濃度分佈..69
圖5.2-14 product SO2濃度與進料壓力、沖洗比之3D圖形…..80
圖5.2-15 product SO2回收率與T2、T3之3D圖形..................81
圖5.2-16 waste SO2濃度與進料壓力、T2之3D圖形...............82


參考文獻1.Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).2.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, 503, Wiley, New York(1960).3.Chue, K.T., J.N. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995). 4.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).6.Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).8.Dong, F., L. Hongmei, K. Akio, G. Motonobu and H. Tsutomu, “The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2—CH4—N2”, Separation and Purification Technology, 16, 159-166(1999)9.Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).10.Gomes, V. G. and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Separation and Purification Technology, 24, 189-196 (2001)11.Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L, Air Liquide, Paris(1964).12.Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).13.Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).14.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).15.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).16.Jee J.,M. Kim and C. Lee,“Adosorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary, Ternary, and Five-component Mixtures”, Ind. Eng. Chem Res. , 40, 868-878 (2001)17.Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).18.Kikkinides, E.S. and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).19.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).20.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).21.Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AIChE. J., 18, 1027 (1972).22.Lee, C., J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45,No.3 (1999)23.Li, Z. and R. T. Yang, “Concentration Profile for Linear Driving Force Model for Diffusion in a Particle”, AIChE J., 45(1), 1999.24.Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company(1964).25.McCabe, W.L., J.C. smith and P. Harriott, Unit operations of Chemical Engineering, 325, 406-408, Fourth Edition, McGraw-Hill, Inc.(1985)26.Montgomery, D.C. ,Design & Analysis of experiments, Wiley, New York (1997)27.Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).28.Park, J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J.,Vol. 46, No.4 (2000)29.Pugsley T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).30.Rubel,A.M. and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. 521-526. Fuel 1997. 31.Ruthven,D.M., Principles of Adsorption & Adsorption Process,209-213,Wiley(1984)32.Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).33.Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).34.Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels,15,279-284 (2001)35.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).36.Skarstrom, C.W.,“Fractionating gas mixtures by adsorption”, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).37.Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)38.Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and purification Technology 24,519-528(2001).39.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).40.Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).41.Welty, J.R.,C.R. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (1983).42.Yang, J., C. Lee and J. Chang,“Separation of Hydrogen Mixture by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res. ,36, 2789-2798 (1997)43.Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AIChE J., 31, 1829 (1985).44.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).45.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).46.Zhang, W. , M. Jia, J. Yu and T. Wu, “Adsorption properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, chem. master., 11,920-923 (1999)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top