跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖元璋
研究生(外文):Yuan-Chang Liao
論文名稱:多塔變壓吸附法回收二氧化碳之研究
論文名稱(外文):The Study of Recovering CO2 by Multi-bed Pressure Swing Adsorption
指導教授:周正堂周正堂引用關係
指導教授(外文):Cheng-Tung Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:102
中文關鍵詞:實驗設計模擬變壓吸附13X沸石二氧化碳溫室效應
外文關鍵詞:greenhouse effectcarbon dioxidezeolite 13Xpressure swing adsorptionsimulationexperiment design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘 要
溫室效應已對全球氣候造成重大的變遷。因此,如何回收工廠所排放出來的二氧化碳將是解決二氧化碳問題的首要步驟。
本研究是由模擬方式進行三塔式變壓吸附程序的探討。進料為16%CO2和84%N2的混合氣體,吸附劑採用13X沸石,氣體吸附量採Langmuir平衡吸附式,分離機構為平衡模式,忽略吸附塔內的壓降,考慮非恆溫的變壓吸附程序。
以模擬程式探討不同操作參數對產物濃度與回收率的影響,濃縮後的CO2純度可達73%(此時回收率為77%),回收率可達87%(此時純度為70%),並考慮所做的功來計算「實際回收率」,此實際回收率的值會比原本的回收率減少2∼5%左右,再利用實驗設計方法找出影響濃度與回收率的重要參數,並建立預測方程式,預測的結果平均誤差約5∼8%。


Abstract
The global climate is greatly changed by greenhouse effect. The recovery of CO2 from flue gas is the first important step in solving CO2 problem.
The three-bed pressure swing adsorption (PSA) processes were explored by simulation in this study. The feed gas contains 20% CO2 and 80% N2. The adsorbent is zeolite 13X. The amount of adsorption is calculated by Langmuir isotherm, and this study used the equilibrium model without the consideration of pressure drop. It is also considered non-isothermal operation.
The simulation program has studied the influence of operation parameters. The higher purity of the concentrate CO2 is 73% (the recovery is 77%), and the higher recovery is 87% (the purity is 70%).It is also considered the work of the process to calculate the “actual recovery”. The values of the actual recovery reduce about 2∼5% from recovery. The important parameters that affect the purities and recoveries were found by the method of experiment design, and we found the polynomials to predict the results. The average errors of the polynomials are about 5∼8%.


目錄………………………………………………………………………I
圖目錄…………………………………………………………………IV
表目錄…………………………………………………………………..VI
第一章緒論…………………………………………………..………..1
第二章簡介與文獻回顧…………………………….…………..…….3
2.1 變壓吸附簡介………………………………………………..….3
2.1.1 吸附現象………………………………………..…………..3
2.1.2 吸附劑選擇…………………………………………………4
2.1.3 變壓吸附……………………………………………………5
2.2 文獻回顧………………………………………………………...8
2.2.1 變壓吸附製程的開發與演進………………………………8
2.2.2 理論回顧…………………………………………………....9
2.2.3 以變壓吸附製程回收污染物的應用……………………..12
第三章理論…………………………………………………………..15
3.1 基本假設……………………………………………………….16
3.2 統制方程式………………………………………………..…...17
3.3 吸附平衡關係式……………………………………….21
3.4 參數推導………………………………………………..26
3.5 起始條件與邊界條件………………………………….27
3.6 求解的方法…………………………………………….28
3.6.1 閥公式………………………………………..……..28
3.6.2 求解步驟…………………………………………….…29
第四章製程…………………………………………………………31
4.1 三塔製程…………………………………………………..31
4.2 常數與操作條件………………………………………35
4.3 計算實際效益………………………………………….39
第五章結果、討論與分析…………………………………………41
5.1 沖洗比(P/F)的影響……………………………………..44
5.2 進料壓力的影響……………………………………………48
5.3 脫附壓力的影響…………………………………………....51
5.4 步驟時間的影響………………………………………………56
5.4.1 改變第一步驟時間……………………………………….56
5.4.2 改變第二步驟時間……………………………………….59
5.5 簡介實驗設計…………………………………………………63
5.6 利用實驗設計的方法分析……………………………………69
5.7 結論……………………………………………………………83
符號說明……………………………………………………………….84
參考文獻……………………………………………………………….86
附錄A 流速之估算方法……………………………..……………...92
附錄B 依預測方程式預測水準的特性值…………………………..96
圖目錄
圖1 IPCC第三次評估報告書紀錄過去140年與未來全球氣溫之預
測…………………………………………………………………2
圖2 吸附分離的原理…………………………………………..4
圖3 電腦程式之求解流程圖…………………………………30
圖4.1 三塔六步驟程序圖………………………………………….…33
圖5.0.1 塔頂的壓力對時間的變化………………………………….42
圖5.0.2 塔頂的濃度對時間的變化………………………………….42
圖5.0.3 塔頂的流量對時間的變化…………………………………..43
圖5.1.1 不同沖洗比對CO2濃度、回收率和實際回收率的影響….45
圖5.1.2 不同沖洗比之沖洗後塔內氣相濃度分佈圖………………..46
圖5.1.3 不同沖洗比之吸附後塔內氣相濃度分佈圖………………..47
圖5.2.1 不同進料壓力對CO2濃度、回收率和實際回收率的影響..49
圖5.2.2 不同進料壓力之吸附後塔內氣相濃度分佈圖……………..50
圖5.3.1 不同脫附壓力對CO2濃度、回收率和實際回收率的影響..52
圖5.3.2 不同脫附壓力之脫附後塔內氣相濃度分佈圖……………..53
圖5.3.3 不同脫附壓力之沖洗後塔內氣相濃度分佈圖…………….54
圖5.3.4 不同脫附壓力之吸附後塔內氣相濃度分佈圖……………55
圖5.4.1 不同第一步驟時間對CO2濃度、回收率和實際回收率的影
響…………………………………………………………….57
圖5.4.2 不同第一步驟時間之吸附後塔內氣相濃度分佈圖………58
圖5.4.3 不同第二步驟時間對CO2濃度、回收率和實際回收率的影
響…………………………………………………………….60
圖5.4.4 不同第二步驟時間之沖洗後塔內氣相濃度分佈圖………61
圖5.4.5 不同第二步驟時間之吸附後塔內氣相濃度分佈圖………62
圖5.6.1 在沖洗比為0.25,第一步驟時間50秒,第二步驟時間49
秒下,CO2純度與進料壓力,脫附壓力之間的關係圖…..75
圖5.6.2 在沖洗比為0.25,第一步驟時間50秒,第二步驟時間49
秒下,CO2回收率與進料壓力,脫附壓力之間的關係圖…78
圖5.6.3 在沖洗比為0.25,第一步驟時間50秒,第二步驟時間49
秒下,CO2實際回收率與進料壓力,脫附壓力之間的關係
圖……………………………………………………………81
表目錄
表4.1 吸附塔及吸附劑特性………………………………………….36
表4.2 氣體的性質………………………………………….....36
表4.3 氣體在13X上的Langmuir吸附曲線參數…..……..37
表4.4 88年台灣地區發電方式比例及CO2產生量……………..….43
表5.1 不同沖洗比對CO2濃度、回收率和實際回收率的影響…….45
表5.2 不同進料壓力CO2對濃度、回收率和實際回收率的影響…48
表5.3 不同脫附壓力對CO2濃度、回收率和實際回收率的影響…52
表5.4.1 不同第一步驟時間對CO2濃度、回收率和實際回收率的影
響……………………………………………………………..57
表5.4.2 不同第二步驟時間對CO2濃度、回收率和實際回收率的影
響……………………………………………………………..60
表5.5.1 直交對比係數( )………………………………………66
表5.5.2 交互作用的直交對比係數(TCL×L、TCL×Q、TCQ×L、TCQ×Q)…67
表5.6.1 應用實驗設計法所採用之因子和水準…………………….69
表5.6.2 實驗設計所需直交表與模擬數據………………………….70
表5.6.3 依純度所做的變異數分析表……………………………….71
表5.6.4 依回收率所做的變異數分析表…………………………….72
表5.6.5 依實際回收率所做的變異數分析表………………………72
表5.6.6 純度分成線性和二次的ANOVA表………………………73
表5.6.7 回收率分成線性和二次的ANOVA表……………………76
表5.6.8 實際回收率分成線性和二次的ANOVA表………………79
表5.6.9 預測方程式與電腦模擬的比較……………………………82


參考文獻1.Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).2.Chue, K.T., J.N. Kim, Y.J. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res.,34(2), 591-598 (1995).3.Diagne, D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89 (1994).4.Diagne, D., M. Goto and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Ind. Eng. Chem. Res., 34, 3083-3089 (1995).5.Diagne, D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).6.Dong, F., H. Lou, A. Kodama, M. Goto and T. Hirose, “A New Concept in the Design of Pressure-Swing Adsorption Processes for Multicomponent Gas Mixtures”, Ind. Eng. Chem. Res., 38, 233-239 (1999).7.Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).8.Doong, S.J. and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987).9.Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990).10.Glueckauf, E. and J.E. Coates, J. Chem. Soc., 1315 (1947)11.Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L‘ Air Liquide, Paris (1964).12.Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).13.Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).14.Hwang, K.S. and W.K. Lee, “The Adsorption and Desorption Breakthrough Behavior of Carbon Monoxide and Carbon Dioxide on Activated Carbon. Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficient”, Separation Science and Technology, 29(14), 1857-1891 (1994).15.Izumi, J., “Hydrogen Sulifide Removal with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M Suzuki), Kodansha, Tokyo, 293-299 (1992a).16.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”, Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84 (1992b).17.Kadlec, R.H. and D.E. Kowler, “ The optimal control of a periodic adsorbed “, AIChE., J.,18,1027 (1972).18.Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removal and SO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).19.Kikkinides, E.S. and R.T. Yang, “Gas Seperation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372 (1993).20.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Conceration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).21.Kikkinides, E.S., V.I. Sikavitsas and R.T. Yang, “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States”, Ind. Eng. Chem. Res., 34, 255-262 (1995).22.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorpiton of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X ”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).23.Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company (1964).24.McCabe, W.L., J.C. Smith and P. Harriott, Unit operations of Chemical Engineering, 325,.406-408, Fourth Edition, McGraw-Hill, Inc (1985).25.Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York (1997).26.Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114 (1983).27.Park J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., Vol. 46, No.4, 790-802 (2000).28.Perry, R.H. and D. Green, Perry’s Chemical Engineers’ Handbook, McGraw-Hill Book Company, 3-285 (1984).29.Pugsley, T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481 (1994).30.Raghavan, N. S., D. M. Ruthven and M. M. Hassan, “Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1325 (1986).31.Rege, S.U., R.T. Yang and M.A. Buzanowski, “Sorbents for air prepurification in separation”, Chemical Engineering Science, 55, 4827-4838 (2000).32.Rubel, A.M. and T.M. Stencel, “ The effect of low concentration SO2 on the adsorption of NO from gas over Activated carbon “, Fuel , Vol 76, Iss 6, 521-526 (1997).33.Ruthven, D.M., Principles of Adsorption & Adsorption Processes, 209-213, Wiley (1984).34.Saji, A., Y. Takamura, H. Noda, “Application of PSA to Separation of Carbon-Dioxide from Flue-Gas”, Kagaku Kogaku Ronbunshu, Vol 23, Iss 2, 149-156 (1997).35.Shendalman, L.H. and J.E. Mitchell, Chem. Eng. Sc., 27, 1449 (1972).36.Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).37.Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).38.Siriwardane, R.V., M. Shen, E.P. Fisher and J.A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels, 15, 279-284 (2001).39.Skarstrom, C.W., “Use of adsorption phenomena in automatic plant-type gas analysis”, Ann., NY acad. Sci., 72,751 (1959).40.Skarstrom, C.W., ” Fractionating gas mixtures by adsorption “, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).41.Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and Purification Technology, 24, 519-528 (2001).42.Tamura, T., U.S. Patent 3,797,201, assigned to Tamura, Tokyo, Japan (1974).43.Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).44.Wagner, J.L., U.S. Patent 3,430,418, to Union Carbide Corporation (1969).45.Winnick, J., Chemical Engineering Thermodynamics, Wiley, New York, Appendix II (1997).46.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of NOx by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).47.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).48.Zhang, W., M. Jia, J. Yu and T. Wu, “Adsorption Properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, Chem. Mater., 11, 920-923 (1999).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top