跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳筠莒
研究生(外文):Chen Yun-Chu
論文名稱:固態核慈共振於經脫鋁氟化修飾後之沸石鑑定及其機制探討
論文名稱(外文):Characterization of the Dealumination of Zeolite H-Beta with Ammonium Hexafluorosilicate with Solid-State NMR
指導教授:高憲明
指導教授(外文):Kao Hsien-Ming
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:固態核慈共振光譜儀沸石脫鋁
外文關鍵詞:DealuminationSolid-State NMRH-BetaZeolite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘要
研究經由(NH4)2SiF6 (AHFS)試劑處理Η−β沸石的27Al MAS NMR 和19F MAS NMR,並結合兩核種使用雙頻共振(double resonance)NMR 的技術,像19F{27Al} TRAPDOR 和27Al{19F} REDOR。在結果中顯示有加醋酸銨或沒加醋酸銨經由AHFS 試劑反應的的條件下,這兩種反應條件下的27Al MAS NMR 和19F MAS NMR 光譜有很大的不同,但是都會進行脫鋁反應,而脫鋁反應會影響骨架外的鋁之含量和狀態,並且會生成不同的鋁-氟化合物。
有加醋酸銨的情況下經由AHFS 處理Η−β沸石,在27Al MASNMR 上可觀測到四配位的鋁會脫離骨架而形成骨架外的鋁,而骨架外的鋁之化合物,測量19F MAS NMR 是相對應於化學位移-143ppm的吸收峰,是由(NH4)3AlF6 化合物所造成訊號。另一種處理方法是沒有加醋酸銨經由AHFS 處理Η−β沸石,可以在27Al MAS NMR 中觀測到化學位移於13ppm、0ppm 和一個很寬的化學位移由-20 到-90ppm,並觀測19F MAS NMR 光譜,發現除了有(NH4)3AlF6 的化合物生成,至少還有兩種不同的鋁-氟化合物產生。並且發現在AHFS 水溶液中形成的氟離子和pH 值有很大的關係。AHFS 和沸石反應時所產生的特徵峰,可利用27Al MAS NMR 和19F MAS NMR 光譜互相比較來說明可能形成的脫鋁機制。


The dealumination of zeolite H-b by ammonium hexafluorosilicate (i.e., (NH4)2SiF6, AHFS) treatment was investigated by 27Al and 19F magic angle spinning (MAS) NMR, combined with double resonance NMR. Our results demonstrated that the operating conditions of AHFS dealumination, that is, in the presence and absence of ammonium acetate (NH4Ac), strongly affect the amount, state, and nature of extraframework aluminum species (EFAl). Different aluminum fluoro-complexes after dealumination were detected. The correlation between 19F and 27Al spins was made with the use of double resonance methods such as 19F{27Al} TRAPDOR and 27Al{19F} REDOR NMR. There are significant differences in the 27Al and 19F NMR spectra of dealuminated H-b samples treated by AHFS with and without NH4Ac. For AHFS treated H-b in the presence of NH4Ac, 27Al MAS NMR revealed that tetrahedral aluminum at 54 ppm was mostly expelled from the zeolitic framework, resulting in the formation of two types of EFAl at 13 and 0 ppm. The EFAl at 0 ppm, corresponding to the 19F resonance at —143 ppm, can be assigned to (NH4)3AlF6. In the absence of NH4Ac, besides the EFAl species observed at 13 and 0 ppm, a new broad powder pattern spread from —20 to —90 ppm were observed. The 27Al NMR results demonstrated that at least two different forms of aluminum fluoro-complexes other than (NH4)3AlF6 were present after dealumination. These aluminum fluoro-complexes showed multiple lines located in the range of —150 to —158 ppm in the corresponding 19F spectra. It was found that the formation of fluorinated species after AHFS treatment strongly depends on the pH of the solution, i.e., in the presence and absence of NH4Ac. Complementary characterizations with 27Al and 19F NMR as a function of AHFS content are useful to make peak assignments, and to elucidate possible dealumination mechanisms.


中文摘要…………………………………………………………... I
英文摘要…………………………………………………………... II
目錄………………………………………………………………... III
表目錄……………………………………………………………... V
圖目錄……………………………………………………………... VI
第一章緒論……………………………………………………….
1-1 前言……………………………………..…………………..1
1-2 沸石與分子篩…………………………..…………………..5
1-2-1 Beta 沸石的結構………………………………….…8
1-3 脫鋁反應(Dealumination)……………..…………………...10
1-4 固態核磁共振儀(Solid-state NMR)…..……………………11
1-4-1 Zeeman 作用力………………………………………..12
1-4-2 非均向化學位移( Chemical Shift Anisotropy)……….12
1-4-3 偶極-偶極交互作用力(Dipole-Dipole interactions)….14
1-4-4 四極矩作用力(Quadrupolar Interactions)…………….14
1-5 去耦合( decoupling) 作用…………..……………………..17
1-6 魔角旋轉(Magic Angle Spinning)…..……………………..17
1-7 核磁共振儀應用於沸石上……..…………….…………….18
1-7-1 1H MAS NMR 光譜…………………………………19
1-7-2 29Si NMR 光譜………………………………………19
1-7-3 27Al NMR 光譜………………..…………………….21
1-7-4 19F NMR 光譜……………………………….………22
1-8 研究動機與目的……...…………………………………….24
第二章 實驗部分………………………………………………….25
2-1 化學藥品………………………………………………….25
2-2 實驗儀器設備…………………………………………….25
2-2-1 X-光粉末繞射儀……………………………………….26
2-2-2 固態核磁共振光譜儀…………..……………….…….26
2-2-2.1 27Al MAS NMR實驗……………...…………….27
2-2-2.2 29Si MAS NMR實驗…………………………….27
2-2-2.3 1H→29Si交叉極化(Cross Polarization;CP)……28
2-2-2.4 19F MAS NMR實驗……………………………..29
2-2-2.5 19F{27Al} TRAPDOR NMR實驗………………..29
2-2-2.6 27Al{19F} REDOR NMR實驗…………………..30
2-2-3 穿透式紅外光吸收光譜儀……………………………31
2-3 實驗步驟……………………………………………………32
第三章 結果與討論………………………………………………34
3-1 XRD的結果…………………………………………………34
3-2 H-b/AHFS/NH4Ac之27Al MAS NMR光譜結果……….…36
3-3 H-b/AHFS之27Al MAS NMR光譜結果………………….40
3-4吸水效應對27Al MAS NMR光譜的影響……………….…43
3-5 27Al{19F} REDOR NMR光譜的結果………………………45
3-6 pH值對AHFS水溶液之19F NMR光譜的影響………….47
3-7 H-b/AHFS/NH4Ac的19F MAS NMR光譜結果…………50
3-8 H-b/AHFS的19F MAS NMR光譜結果………………….53
3-9 19F{27Al} TRADOR NMR光譜的結果…………………….56
3-10 29Si MAS NMR光譜的結果………………………………58
3-11 IR光譜的結果…………………………………………….65
第四章 結論…………………………………………………….…67
參考文獻…………………………………………………………...69
表目錄表1-1 沸石發展記事……………………………………………..7
表3-1 H-b/AHFS-x-NH4Ac和H-b/AHFS-x-None脫鋁計算的結果………………………………………………...39
表3-2 H-b經由不同AHFS試劑處理後的29Si MAS NMR結果………………………………………………………..63
表3-3 H-b經由不同AHFS試劑加醋酸銨處理後的29Si MASNMR結果………………………………………………….64
圖目錄圖1-1 矽氧與鋁氧四面體之結構………………………………..3
圖1-2 多孔洞物質的分類………………………………………4
圖1-3 構成沸石結構的二級單元及多面體結構…………………6
圖1-4 sodalite cage 的結構……………………………………….8
圖1-5 Beta 沸石的立體結構……………………………….…….9
圖1-6 Beta 沸石的孔洞大小…………………………………….10
圖1-7 在MAS條件下27Al的中心躍遷受二次(second order)四偶極所產生模擬圖形………………………………….16
圖1-8 魔角旋轉NMR磁場與樣品的相對位置圖……………….18
圖1-9 在矽鋁沸石中29Si 光譜化學位移的分佈……..…………20
圖1-10 自旋量子為5/2 的能階圖…………………………..……23
圖2-1 1H→29Si交叉極化的脈衝程序…………………………….29
圖2-2 19F{27Al} TRAPDOR的脈衝程序…………………………30
圖2-3 27Al{19F} REDOR的脈衝程序……………………………..31
圖3-1 H-b樣品的XRD光譜圖……………………….………….35
圖3-2 H-b/AHFS/NH4Ac之27Al MAS NMR光譜圖…………..….37
圖3-3 H-b/AHFS之27Al MAS NMR光譜圖………………………41
圖3-4 H-b吸水前後的27Al MAS NMR光譜圖……………….…..44
圖3-5 H-b/AHFS-1.6-NH4Ac的27Al{19F} REDOR NMR光譜圖..46
圖3-6 AHFS水溶液的19F NMR光譜圖……….…………………..48
圖3-7 H-b/AHF/NH4Ac的19F MAS NMR光譜圖……...…………51
圖3-8 H-b/AHFS之19F MAS NMR光譜圖……………………….54
圖3-9 H-b/AHFS/NH4Ac之19F{27Al} TRAPDOR NMR光譜圖…57
圖3-10 H-b/AHFS-1-None的29Si MAS NMR光譜圖…………59
圖3-11 H-b/AHFS-1-None的29Si MAS NMR光譜圖和CP圖60
圖3-12 H-b樣品的IR圖譜…………………….....………66


參考文獻1. 吳榮宗,工業觸媒概論,增訂版,國興出版社,1989.2. 王奕凱,邱宗明,李秉傑合譯,非均勻系催化原理與應用,國立編譯館,渤海堂文化公司,台北,1993.3. Shevade, S.; Ahedi, R. K. and Kotasthane, A. N. Catal. Lett., 49(1-2), 69 (1997).4. WO 96/405875. IUPAC Manual of Symbols and Terminology, appendix 2, Part 1,Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578.6. Breck, D. W. in Zeolite Molecular Sieves, Wiley :New York, 1974.7. Farneth, W. E.; Gorte, R. J. Chem. Rev. 1995, 95, 615.8. 蔡佳龍碩士論文,國立台灣大學化學系, 88 年6 月.9. McVain, J. W. in The Sorption of Gases and Vapors by solids, Ruthedgeand Sons, London, Chapter 5, 1932.10. Bennett, J. M.; Blackwell, C. S.; Cox, D. E. Interzeolite Chemistry, Am. Chem. Soc. Symp. Ser. 218, American Chemical Society, Washington, D. C., 1983.11. Meier, W. J.; Olson D. in Altas of Zeolite Structure types, Butterworths, London, 1992.12. Parikh, P.A.; Subrahmanyam, N.; Bhat, Y.S.; Halgeri, A.B. J. Mol. Catal. 1994, 88, 85.13. Maache, M., Janin, A., Lavally, J.C., and Joly, J.F. Zeolites 1993, 13, 419.14. Apelllian, M.R.; Fung, A.S.; Kennedy, G.J.; Degnan, T.F. J. Phys. Chem. 1996, 100, 16577.15. Weitkamp, J.; Sakuth, M.; Chen, C.; Ernst, S. J. Chem. Soc. Chem. Commun. 1989, 1908.16. Bowes, E.; Pelrine, B.P. US Patent 1983, 4388177.17. Beyerlein, R.A.; Kugler, E.L.; Tunison, M.E.; Vaughan, D.E.W. EP Patent 1991, 0259526B1.18. Apelian, M.R.; Degnan, T.F. ; Fung, A.S.; Kennedy, G.J. US Patent 1993, 5200,16819. Apelian, M.R.; Degnan, T.F. US Patent 1993, 5238677.20. Mehring, M. in High Resolution NMR of Solids, Springer-Verlag, Berlin, 1983.21. Ernst, R.R.; Bodenhausen, G.; Wokann, A. in Principle of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon :Oxford, 1987.22. Blum, K. in Density Matrix Theory and Applications, Plenum: New York, 1981.23. Brink, D.M.; Satchler, G.R. in Angular Momentum, University Press: Oxford, 1962.24. Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. Rev. 1948, 73, 679.25. Rose, M. E. in Elementary Theory of Angular Momentum, Wiley: New York, 1957.26. Jacobs, W. P. J. H.; de Haan, J. W.; van de Ven, L. J. M.; van Santen,27. Jack M. Miller. Progress in Nuclear Magnetic Resonance Spectroscopy. 28 (1996) 25-281.28. van Bolhoven, J. A.; Koningsberger, D. C.; Kunkeler, P.; van Bekkum, H.; Kentgens, A. P. J. Am. Chem. Soc. 2000, 122, 12842.29.(a) Alemany, L. B.; Kirker, G. W. J. Am. Chem. Soc. 1986, 108, 6158. (b) Gilson, J. P.; Edwards, G. C.; Peters, A. W.; Rajgopalan, K.; Wormsbecher, R. F.; Roberie, T. G.; Shatlock, M. P. J. Chem. Soc. Chem. Commun. 1987, 91.30. Samoson, A.; Lippmaa, E.; Engelhardt, G.; Lohse, U.; Jerschkewiz, H. G. Chem. Phys. Lett. 1987, 134, 589.31. Voegtlin, A. C.; Ruch, F.; Guth, J. L.; Patarin, J.; Huve, L. Microporous and Mesoporous Materials 1997, 9, 95.32.Delmotte, L.; Soulard, M.; Guth, F.; Seive, A.; Lopez, A.; Guth, J. L. Zeolites, 1990, 10, 778.33. Decanio, E. C.; Bruno, J. W.; Nero, V. P.; Edwards, J. C. J. Catal. 1993, 140, 84.34. Kowalak, S. Acta. Chim. Acad. Sci. Hung. 1981, 107, 19.35. Matwiyoff, N. A.; Wageman, W. E. Inorg. Chem. 1970, 9, 1031.36. Sur S. K.; Bryant, R. G. Zeolites, 1996, 16, 118.37. Fischer, L.; Harle V.; Kasztelan, S.; d’Espinose de la Caillerie, J. B. Solid State Nucl. Magn. Reson. 2000, 16, 85.38. Chao, K. J.; Sheu, S. P.; Lin, L. H.; Genet, M. J.; Feng, M. H. Zeolites, 1997, 18, 18.39. Darrt, C. B.; Davis, M. E.; Catal. Today, 1994, 19, 151.40. Spectromeyric Identification of Organic Compounds, Sixth edition, Rober, M. Silverstein; Francis, X. Webster.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top