跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瑜雯
研究生(外文):Yu-Wen Huang
論文名稱:阿拉伯芥根細胞核之有絲分裂原蛋白質激酶與蛋白質酪胺酸磷酸化受銅處理之變化
論文名稱(外文):Nuclear Protein Phosphorylation under Metal Stress of Copper in the Root of Arabidopsis thaliana : the Aspects of MAPKs and tyrosine phosphorylation
指導教授:董啟功
指導教授(外文):Chii-Gong Tong
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:49
中文關鍵詞:阿拉伯芥有絲分裂原蛋白質激酶酪胺酸蛋白質激酶
外文關鍵詞:tyrosine phosphorylated proteinsArabidopsis thalianaMAP kinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘要
銅是植物生長所需的微量必須元素。但是當其過量時反而會引起
逆境的產生。細胞在化學逆境如過量金屬存在之㆘,會經由特定的訊
息傳遞路徑來調控基因表現。在動物細胞㆗和逆境相關的兩個主要訊
息傳遞因子為有絲分裂原蛋白質激酶及酪胺酸蛋白質激酶。其受逆境
活化後,再活化其受質如轉錄因子,以調控特定基因的表現。在植物
㆗目前仍無探討金屬離子與有絲分裂原蛋白質激酶及酪胺酸蛋白質
酶關聯性的文獻發表。本論文是利用西方點墨法及膠內激酶活性分析
來探討在阿拉伯芥根部細胞核㆗的有絲分裂原蛋白質激酶及酪胺酸
磷酸化情形。結果偵測到㆒特定存在細胞核㆗54 kDa 的有絲分裂原
蛋白質激酶及㆕個酪胺酸磷酸化蛋白質受到過量銅處理而被磷酸
化。阿拉伯芥根部細胞經專㆒性高的有絲分裂原蛋白質激酶激酶抑制
劑-PD98059 處理後發現,此54 kDa核內有絲分裂原蛋白質激酶並不
會受到其處理而磷酸化受到抑制,所以推測其㆖游的有絲分裂原蛋白
質激酶激酶可能不為AtMEK1/ATMKK2。


Abstract
Copper is an essential micronutrient in plants. However, it causes
stress response when presents in excess of amount. Cells cope with such
chemical stress by signaling to the cellular responses including to activate
particular transcription factors and regulate specific gene expression in
nuclei. Two of the major stress signaling mechanisms are MAPKs and
PTKs. None of the reports have studied how excess metal manipulate
MAPKs or PTKs in plant nuclear compartment. In this thesis, using
immunochemical analyses and in-gel kinase assays results clearly
confirm the presence of a 54-kDa copper-induced nuclear MAPK and
several tyrosine phosphorylated nuclear proteins in the roots of
Arabidopsis thaliana. Treatment of PD98059 could not inactivate this
unique nuclear MAPK. This indicates that its upstream MAPKK is not
AtMEK1/AtMKK2.


目錄
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅱ
目錄………………………………………………………………Ⅲ
縮寫與全名對照表……………………………………………....Ⅴ
圖目錄…………………………………………………………....Ⅵ
壹、緒論........................................................................................ 1
一、研究動機及緣由............................................................... 1
二、銅對植物的影響............................................................... 1
三、逆境與植物訊息傳遞之間的關係................................... 2
四、有絲分裂原蛋白質激酶................................................... 2
五、酪胺酸蛋白質激酶........................................................... 5
貳、材料與方法............................................................................. 8
一、阿拉伯芥培養................................................................... 8
二、根部細胞核之分離........................................................... 9
三、西方點墨法....................................................................... 9
四、膠內激酶活性分析......................................................... 12
五、有絲分裂原蛋白質激酶激酶抑制劑PD98059的使用13
六、化學藥品......................................................................... 13
七、儀器設備......................................................................... 14
參、結果....................................................................................... 15
一、阿拉伯芥根部細胞核之分離......................................... 15
二、以組蛋白H3抗體確定是否分離到阿拉伯芥細胞核.. 15
三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質
激酶......................................................................................... 16
四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 17
五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 17
肆、討論....................................................................................... 18
一、阿拉伯芥根部細胞核之分離......................................... 18
二、以組蛋白H3抗體確定分離到阿拉伯芥細胞核.......... 19
三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質
激酶......................................................................................... 20
四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 23
五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 24
伍、參考文獻............................................................................... 25
圖目錄........................................................................................... 30
附錄............................................................................................... 42


伍、參考文獻N. Halfter, U. and Chua, N. H. (1994). Cloning and biochemicalcharacterization of a plant protein kinase the phosphorylation serine,threonine, and tyrosine. J. Biol. Chem. 269: 31626-31629.Asai, T. Plotnikova, J. Willmann, M. R. Chiu, W. L. Gomez-Gomez, L.Boller, T. Ausubel, F. M. and Sheen, J. (2002). MAP kinase signallingcascade in Arabidopsis innate immunity. Nature 415: 977 - 983.Barizza, E. Loschiavo, F. Terzi, M. and Filippini, F. (1999). Evidencesuggesting protein tyrosine phosphorylation in plants depends on thedevelopmental conditions.FEBS Lett.. 26: 191-194.Boger, P. and Sandmann, G. (1980). Copper mediated lipid peroxidationprocess in phtosyntheic membrance. Plant Physiol. 66: 797-800.Bradford, M. M. (1976). A rapid and sensitive method for the quantitationmicrogram quantities of protein utilizing the principle of protein-dyebinding. Anal. Biochem. 72: 248-254Clemens S. (2001). Molecular mechanisms of plant metal tolerance andhomeostasis. Planta. 212: 475-86.Desikan, R. Clarke, A. Hancock, J. T. and Neill, S. T. (1999). H2O2activates a MAPK kinase-like enzyme in Arabidopsis Thaliana suspensionculture. J. Exp. bot. 50: 1863-1866Desikan, R. Clarke, A. Atherfold, P. Hancock, J. T. and Neill, S. J.1999). Harpin induces mitogen-activated protein kinase activity duringdefence responses in Arabidopsis thaliana suspension cultures. Planta 210:103.Desikan, R. Hancock, J. T. Ichimura, K. Shinozaki, K. and Neill, S. J.2001). Harpin induces activation of the Arabidopsis mitogen-activatedprotein kinase AtMPK4 and ATMPK6. plant Physiol. 126: 1579-1587.Guo, Y. L. and Roux, S. J. (1995). Partial purification and characterizationof an enzyme from Pea nuclei with protein tyrosine phosphatase activity.Plant Physiol. 107: 167-175Gustin, M. C. Albertyn, J. Alexander, M. and davenport, K. (1998).MAP kinase pathways in the yeast Saccharomyces cerevisiae. Micro. Mol.Biol. Rev. 62: 1264-1300Heldin, C. H. and Purton, M. (1998). Signal transduction. Stanley ThornesLtd. Wellington. pp4Henriques, F. S. (1989). Effect of copper deficiency on the photosyntheticapparatus of sugar beet. Plant Physiol. 135: 453-458Henriques, F. S. and Fernandes, J. C. (1991). Biochemical, physiological,and structutal effects of excess copper in plants. Bot. Rev. 57: 246-273Hooper, S. Wilson, R. Paterson, H. F. and Marshall, C. J. (1998).Nuclear export if the stress-activated protein kinase p38 mediated by itssubstrate MAPKAP kinase-2. Curr. Biol. 8: 1049-1057Hopkins, W. G. (1999). Introduction to plant physiology. John wiley &Sons, Inc., New York. pp65-73.Hoshi, M. Nishida, E. and Sakai, H. (1988). Activation of aCa2+-inhibitable protein kinase that phosphorylates microtubule-associatedprotein 2 in Vitro by growth factors, phorbol esters, and serum in quiescentcultured human fibroblasts. J. Biol. Chem. 263: 5396-5401Huang, Y. Li, H. Gupta, R. Morris, P. C. Luan, S. and Kieber, J. J.2000). ATMPK4, an Arabidopsis homolog of mitogen-activated proteinkinase, is activated in vitro by AtMEK1 through threonine phosphorylation.Plant Physiol. 122: 1301-1310Ichimura, K. Mizoguchi, T. Irie, K. Morris, P. Giraudat, J. Matsumoto,K. Shinozaki, K. (1998). Isolation of ATMEKK1 (a MAP kinase kinasekinase)-interacting proteins and analysis of a MAP kinase cascade in27Arabidopsis. Biochem. Biophys. Res. Commun. 18: 532-543Ichimura, K. Mizoguchi, T. Yoshida, R. Yuasa, T and Shinozaki, K.(2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinaseATMPK4 and ATMPK6. The plnat J. 24: 655-665.Jonak, C. Ligterink, W. and Hirt, H. (1999). MAP kinase in plant signaltransduction. Cell Mol. Life Sci. 55: 204-213Kastori, R. Petrovic, M and Petrovic, N. (1992). Effect of excess lead,cadmium, copper, and zine on water relations in sunflower. J. Plant Nutrition15: 2427-2439Kovtun, Y. Chiu, W. L. Tena, G. and Sheen, J. (2000). Functional analysisof oxidative stress-activated mitogen-activated protein kinase cascade inplants. Proc. Natl. Acad. Sci. USA 97: 2940-2945Ligterink, W. Kroj, T. Nieden, U. Z. Hirt, H. and Scheel, D. (1997).Receptor-mediated activation of a MAP kinase in pathogen defense of plants.Science 276: 2054-2057Lolkema, P. C. Donker, M. H. Schouten, A. J. and Ernst, W. H. O. (1984).The possible role of metallothioneins in copper tolerance of Silene cucubalus.Planta 162: 174-179Luan, C. M. Gonzalez, C. A. and Trippi, V. S. (1994). Oxidative damagecaused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15Marinez-Zapater, J. M. and Salinas, J. (1998). Arabidopsis protocols.Humana Press Inc., Totowa. pp28.Mira, H. Martinez, N. and Penarrubia, L. (2002). Expression of avegetative-storage-protein gene from Arabidopsis is regulated by copper,senescence and ozone. Planta 214: 939-46Mizoguchi, T. Hayashida, N. Yamaguchi-Shinozaki, K. Kamada, H. andShinozaji, K. (1993). ATMPKs: a gene family of plant MAP kinase inArabidopsis Thaliana. FEBS Lett. 336: 440-44428Ren, D. and Zhang, S. (2002). Cell death mediated by MAPK is associatedwith hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 4:559-565.Romeis, T. Zhang, S. Klessig, D. F. Hirt, H. Jones, J. D. (1999). RapidAvr9- and Cf-9 -dependent activation of MAP kinases in tobacco cellcultures and leaves: convergence of resistance gene, elicitor, wound, andsalicylate responses. Plant cell 11: 273-287.Samet, J. M. Graves, L. M. Quay, J. Dailey, L. A. Devlin, R. B. Ghio, A.J. Wu, W. Bromberg, P. A. Reed, W. (1998). Activation of MAPKs inhuman bronchial epithelial cells exposed to metals. Am. J. Physiol. 275:L551-L558Sun, X. Majumder, P. Shioya, H. Wu, F. Kumar, S. Weichselbaum, R.Kharbanda, S. and Kufe, D. (2000). Activation of the cytoplasmic c-Ab1tyrosine kinase by reactive oxygen species. J boil. Chem. 18: 17237-17240Tena, G. Asau, T. Chiu, W. L. and sheen, J. (2001). Plantmitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol.4: 392-400Tong, C. G. Kendrick, R. E. and Roux, S. J. (1996). Red light-inducedapperance of phosphotyrosine-like epitopes on nuclear proteins from pea(Pisum sativum L.) Plumules. photochemistry and photobiology 64: 863-866.Wrzaczek, M. and Hirt, H. (2001). Plant MAP kinase pathways: how manyand what for? Biol. Cell 93: 81-87Xu, Q. Fu, H. H. Gupta, R. Luan, S. (1998). Molecular characterization ofa tyrosine-specific protein phosphatase encoded by a stress-responsive genein Arabidopsis. Plant Cell 10: 1769Yuasa, T. Mizoguchi, T and Shinozaki, K (2001). Oxidative stressactivates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant CellPhysiol. 42: 1012-1016.Zhang, S. and Klessig, D. F. (2001). MAPK cascades in plant defensesignaling. Trends in Plant Sci. 6: 521-527Zwerger, K. and Hirt, H. (2001). Recent advances in plant MAP kinasesignaling. J. Biol. Chem. 382: 1123-1131

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 28. 卓訓榮,陳信雄「電腦平行處理技術在YEN第K條最短路徑演算法之應用」土木水利,第十九卷,第四期,頁21-33,民國八十二年二月。
2. 28. 卓訓榮,陳信雄「電腦平行處理技術在YEN第K條最短路徑演算法之應用」土木水利,第十九卷,第四期,頁21-33,民國八十二年二月。
3. 29. 卓訓榮,林文斌「YEN第K條最短路徑演算法及其應用」,交通運輸,第十三期,頁201-215,民國八十年六月。
4. 29. 卓訓榮,林文斌「YEN第K條最短路徑演算法及其應用」,交通運輸,第十三期,頁201-215,民國八十年六月。
5. 29. 卓訓榮,林文斌「YEN第K條最短路徑演算法及其應用」,交通運輸,第十三期,頁201-215,民國八十年六月。
6. 28. 卓訓榮,陳信雄「電腦平行處理技術在YEN第K條最短路徑演算法之應用」土木水利,第十九卷,第四期,頁21-33,民國八十二年二月。
7. 26. 顏上堯、羅守正、辜偉峰「最短路徑演算法理論複雜度與電腦執行時間比較分析」運輸,第24期,頁11-24,民國八十三年六月。
8. 26. 顏上堯、羅守正、辜偉峰「最短路徑演算法理論複雜度與電腦執行時間比較分析」運輸,第24期,頁11-24,民國八十三年六月。
9. 26. 顏上堯、羅守正、辜偉峰「最短路徑演算法理論複雜度與電腦執行時間比較分析」運輸,第24期,頁11-24,民國八十三年六月。