跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江賢仁
研究生(外文):Hsien-Jen Chiang
論文名稱:臺灣中部地區強地動波形模擬
論文名稱(外文):Strong Ground Motion Simulation in the Central Taiwan
指導教授:溫國樑
指導教授(外文):Kuo-Liang Wen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:96
中文關鍵詞:集集地震波形模擬強地動數值方法虛擬頻譜法
外文關鍵詞:Chi-Chi earthquakesimulationstrong ground motionnumerical methodpseudo-spectral method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
1999年9月20日(格林威治時間)臺灣地區發生了二十世紀以來規模最大的地震(Mw 7.6),在集集地震發生的同時,臺灣中西部濱海平原地區激發出長週期的表面波,而中央氣象局TSMIP強震觀測網對這些表面波資料有著相當好的紀錄。雖然並沒有任何直接的災情報告是與這些表面波有關,但是台中港區圓柱型儲密槽的損毀可能是與此表面波有關。此外表面波對興建中的高速鐵路高架軌道系統與長跨距橋樑將是可能的潛在破壞因子。在本研究中,我們以找出在台灣中部平原上激發出表面波的條件為主要研究課題。使用的數值計算方法是虛擬頻譜法(pseudo-spectral method)。模擬過程中,我們針對各種可能影響表面波生成的參數如破裂速度、斷層傾角及斷層破裂是否到達地表均加以測試。
研究結果獲得三項主要結論。一是只要在台灣中部麓山帶發生中大型地震,而且破裂面有達到表層低速沈積物或地表,則會產生長週期表面波。二是破裂速度會控制表面波持續時間的長短,較慢的破裂速度會產生較長的表面波訊號。這可引申當有一地震以慢速度破裂,並破裂至地表則激發出之表面波會有相當大的振幅並且有相當長的持續時間。三是地震破裂面之上部近地表部分能量主要控制表面波之生成,而深部破裂能量則控制體波訊號。
The 20 September 1999 Chi-Chi, Taiwan, Earthquake (Mw 7.6) was the largest earthquake to strike Taiwan in the twentieth century. At the mean time, long-period surface waves were excited in the western coastal plain of central Taiwan. The seismic signals were well recorded by the Central Weather Bureau’s strong motion seismometers. The surface wave period was between 2 and 10 seconds. Although there was no report on direct damage caused by surface waves, the breakage of several syrup tanks, at Taichung harbor, is suspected to be the result of surface waves. The long period surface wave is a potential source of damage to long period bridges and elevated railroad systems, such as high-speed bullet trains. In this study, we focus on simulating the factors that control the generation of long period surface waves in the western plain of central Taiwan. The numerical method used is the pseudo-spectral method. We tested several parameters to see the effects on generating surface wave signals. The tested parameters are the rupture velocity, fault dip angle, and whether the fault rupture arrives at the ground surface or not. In this study, we reach three conclusions. First of all, if a medium-sized earthquake occurs in the foothills of central Taiwan, long-period surface waves can be generated in the western coastal plain only if the fault rupture has reached the top low velocity sediments or the ground surface. Second, rupture velocity will strongly control the duration of surface waves. A slower rupture velocity will generate longer surface waves. Third, the excitation of surface waves is mostly controlled by the near surface fault rupture; the deeper part of the rupture will only affect body wave signals.
摘要 ………………………………………………………………… i
誌謝 ………………………………………………………………… ii
目錄 ………………………………………………………………… iii
圖目 ………………………………………………………………… v
表目 ………………………………………………………………… vii
第一章 緒論 ……………………………………………………… 1
1.1 研究動機與目的 ………………………………………… 1
1.2 文獻回顧 ………………………………………………… 3
1.3 研究內容 ………………………………………………… 5
第二章 研究區域及背景介紹 …………………………………… 6
2.1 臺灣地體構造 …………………………………………… 6
2.2 臺灣地質概況 …………………………………………… 6
2.3 研究區域簡介 …………………………………………… 10
第三章 研究原理及方法 ………………………………………… 20
3.1 虛擬頻譜法法 …………………………………………… 20
3.1.1 時間域 …………………………………………… 21
3.1.2 空間域 …………………………………………… 23
3.2 邊界條件 ………………………………………………… 24
第四章 臺灣中部地區二維強地動波形模擬 ………………… 29
4.1 地震測站記錄 …………………………………………… 30
4.2 二維模擬基本設定 ……………………………………… 31
4.2.1 網格設定 ………………………………………… 31
4.2.2 速度模型 ………………………………………… 32
4.2.3 震源參數設定 …………………………………… 33
4.3 不同震源參數之波形模擬 ……………………………… 38
4.2 模擬結果與觀測記錄之比較 …………………………… 52
4.2 台中港區災害討論 ……………………………………… 62
第五章臺灣中部地區似三維強地動波形模擬 ………………… 71
5.1 似三維模擬基本設定 …………………………………… 71
5.1.1 三維斷層破裂模型 ……………………………… 72
5.1.2 速度模型 ………………………………………… 73
5.2 模擬結果與觀測記錄之比較 …………………………… 77
第六章結論 ……………………………………………………… 83
參考文獻 …………………………………………………………… 85
附錄A ……………………………………………………………… 91
英文摘要 …………………………………………………………… 96
Angelier, J. (1986). Preface to the special issue on “ Geodynamics of the Eurasian-Philippine Sea Plate Boundary ”: Tectonophysics 125, pp. IX-X.Bard, P. Y., and M. Bouchon (1980a). The seismic response of sediment-filled valleys. Part 1, The case of incident SH waves, Bull. Seism. Soc. Am. 70, 1263-1286.Bard, P. Y., and M. Bouchon (1980b). The seismic response of sediment-filled valleys. Part 2, The case of incident SH waves, Bull. Seism. Soc. Am. 70, 1921-1941.Bard, P. Y., M. Campillo, F. J. Chavez-Garcia, and F. J. Sanchez-Sesma (1988). The Mexico earthquake of September 19, 1985; A theoretical investigation of large- and small-scale amplification effects in the Mexico City valley, Earthquake Spectra 4, 609-633Bonamassa, O., and J. E. Vidale (1991). Directional site resonances observed from aftershocks of the 18 October 1989 Loma Prieta earthquake, Bull. Seism. Soc. Am. 81, 1945-1957.Boore, D. M. (1972). Finite difference methods for seismic wave propagation in heterogeneous materials, in Methods in Computational Physics 11, B. A. Bolt, ed., Academic Press, New York, 1-37.Borcherdt, R. D., and G. Glassmoyer (1992). On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region, California, Bull. Seism. Soc. Am. 82, 603-641.Campillo, M., J. C. Gariel, K. Aki, and F. J. Sanchez-Sesma (1989). Destructive strong ground motion in Mexico City; source, path, and site effects during great 1985 Michoacan earthquake, Bull. Seism. Soc. Am. 79, 1718-1734Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef (1985). A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics 50, 705-708.Clayton, R. W., and B. Engquist (1977). Absorbing boundary conditions for wave-equation migration, Geophysics 45, 895-904.Chung, J. K., and T. C. Shin (1999). Implications of the rupture process from the displacement distribution of strong ground motions recorded during the 21 September 1999 Chi-Chi, Taiwan earthquake, TAO 4, 777-786.Dorman, J., M. Ewing, and J. Oliver (1960). Study of shear-velocity distribution in the upper mantle by mantle Rayleigh waves, Bull. Seism. Soc. Am. 50, 87-115.Dravinski, M. (1983). Scattering of plane harmonic SH wave by dipping layers or arbitrary shape, Bull. Seism. Soc. Am. 73, 1309-1319.Furumura, T., B.L.N. Kennett, and H. Takenaka (1998). Parallel 3-D pseudospectral simulation of wave propagation by using a Connection machine and workstation-clusters, Geophysics 63, 279-288.Gazdag, J. (1973). Numerical convective schemes based on the accurate computation of space derivatives, J. Comput. Phys. 13, 100-113.Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods, Geophysics 46, 854-859.Hanks, T. C. (1975). Strong ground motion of the San Fernando, California, earthquake; ground displacements, Bull. Seism. Soc. Am. 65, 193-225.Hanks, T. C., and A. G. Brady (1991). The Loma Prieta earthquake, ground motion, and damage in Oakland, Treasure Island, and San Francisco, Bull. Seism. Soc. Am. 81, 2019-2047.Helmberger, D. V. (1974). Generalized ray theory for shear dislocations, Bull. Seism. Soc. Am. 64, 45-64.Herrmann, R. (1987). Computer programs in seismologyHisada, Y., S. Yamamoto, and S. Tani (1991). Why are surface waves excited in sedimentary basins dominant at longer periods?, Proc. of Fourth Int. Conf. On Seismic Zonation. 2, 245-252.Hong, T. L., and D. V. Helmberger (1978). Glorified optics and propagation in nonplanar structure, Bull. Seism. Soc. Am. 68, 1313-1330.Kanamori, H. (1970a). Synthesis of long-period surface waves and its application to earthquake source studies, Kurile islands earthquake of October 13, 1963, J. Geophys. Res. 75, 5011-5027.Kanamori, H. (1970b). The Alaska earthquake of 1964; radiation of long-period surface waves and source mechanism, J. Geophys. Res. 75, 5029-5040.Kawase, H., and T. Sato (1991). Study on strong ground motions in a soft basin considering surface waves generated at the edges, Proc. of Fourth Int. Conf. On Seismic Zonation. 2, 589-596.Keilis-Borok, V. I. (1989). Seismic Surface Waves in a Laterally Inhomogeneous Earth, Kluwer Academic Publishers, 294pp.Knopoff, L. (1972). Observation and inversion of surface-wave dispersion, Tectonophysics 13, 497-519.Kosloff, D., and E. Baysal (1982). Forward modeling by a Fourier method, Geophysics 47, 1402-1414.Liu, H. L., and T. Heaton (1984). Array analysis of the ground velocities and accelerations from the 1971 San Fernando, California earthquake, Bull. Seism. Soc. Am. 74, 1951-1968.Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91, 1069-1087.Ma, K. F., T. R. Song, S. J. Lee, and S. I. Wu (2000). Spatial slip distribution of the September 20, 1999, Chi-Chi Taiwan earthquake ; inverted from teleseismic data, Geophy. Res. Lett. 27, 3417-3420.Montagner, J. P. (1985). Seismic anisotropy of the Pacific Ocean inferred from long-period surface waves dispersion, Phys. Earth Planet. Inter. 38, 28-50.Orszag, S. A. (1972). Comparison of pseudospectral and spectral approximation, Stud. Appl. Math. 51, 253-259.Phillips, W. S., S. Kinoshita, and H. Fujiwara (1993). Basin-induced Love waves observed using the strong-motion array at Fuchu, Japan, Bull. Seism. Soc. Am. 83, 64-84.Reshef, M., D. Kosloff, M. Edwards, and C. Hsiung (1988). Three-dimensional elastic modeling by the Fourier method, Geophysics 53, 1184-1193.Reynolds, A. C. (1978). Boundary conditions for the numerical solution of wave propagation problems, Geophysics 43, 1099-1110.Singh, S. K., E. Mena, and R. Castro (1988). Some aspects of source characteristics of the 19 September 1985 Michoacan earthquake and ground motion amplification in and near Mexico City from strong motion data of the September, 1985, Michoacan, Mexico earthquake, Bull. Seism. Soc. Am. 78, 451-477.Smith, W. D. (1975). The application of finite element analysis of body wave propagation problems, Geophys. J. Roy. Astro. Soc. 42, 747-768.Sochacki, J., R. Kubichek, J. George, W. R. Fletcher, and S. Smithson (1987). Absorbing boundary conditions and surface waves, Geophysics 52, 60-71.Tanaka, T., S. Yoshizawa, and Y. Osawa (1980). Characteristics of strong earthquake ground motion in the period range from 1 to 15 seconds, Proc. of the 7th World Conf. On Earth. Eng. 2, 609-616.Teng, Louis S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics 183, 57-76.Vidale, J. E., and D. V. Helmberger (1988). Elastic finite-difference modeling of the 1971 San Fernando, California, earthquake, Bull. Seism. Soc. Am. 78, 122-141.Zeng, Y. H., and C. H. Chen (2001). Fault rupture process of the September 1999 Chi-Chi, Taiwan, earthquake, Bull. Seism. Soc. Am. 91, 1088-1098.林啟文,2000。臺灣活動斷層概論:五十萬分之一臺灣活動斷層分析圖說明書,經濟部中央地質調查所。辛在勤,1993。臺灣地區強地動觀測計畫,臺灣地區強地動觀測計畫研討會論文摘要,第1-10頁。何春蓀,1971。臺灣之第三紀盆地,臺灣省地質調查所彙刊,第二十三號,第1-4頁。何春蓀,1986。臺灣地質概論-臺灣地質圖說明書,經濟部中央地質調查所。周瑞燉、楊健一,1986。臺灣西部沈積盆地之特性及其儲積油氣潛能,石油,第二十二卷,第一期,第2-25頁。湯振輝,1977。臺灣嘉雲平原地下之晚中新世不整合,中國地質學會專刊,第二號,第155-168頁。溫國樑、葉永田,1986。測站局部地質對地震記錄之影響,臺灣地區地球物理研討會論文集,第75-85頁。鍾仁光,1995。以有限單元法模擬短週期表面波生成特性之震源效應,國立中央大學地球物理研究所博士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top