跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高政揚
研究生(外文):Zhen-yang Kao
論文名稱:低濃度電解質在奈米管內異常的擴散和導電性
論文名稱(外文):Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores
指導教授:賴山強
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:61
中文關鍵詞:傳輸性質擴散電導性奈米管
外文關鍵詞:diffusivityconductivitynanopores
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

摘要
我們應用平衡與非平衡的分子動態(EMD 、NEMD)模擬研究電解質在奈米管內的傳輸性質。電解質由帶一價之正、負離子及中性水分子組成。在本論文中使用連續強制簡易模型 (Continuum restrictive primitivemodel(CRPM))、連續簡易模型 (Continuum primitive model(CPM))模擬電解質;將正、負離子浸入具極性的水分子環境,極性效應以巨觀介電常數(78.41)模擬成連續背景,並將整個系統放在電中性無限長的圓柱管。使用Gaussian isokinetic equation of motion 維持系統在室溫,同時也使用週期邊界條件 (periodic -boundary conditions),固定離子的濃度。我們擬探討通道半徑大小、離子濃度對平衡擴散性質與非平衡導電性質的影
響。CRPM 及CPM 的模擬結果顯示當離子濃度為0.1M ,擴散係數隨通道半徑縮小而減少;0.05M 時,擴散係數幾乎不變;但在低濃度0.025M ,隨著通道半徑縮小,擴散係數異常增加,此異常現象在加入電場的非平衡導電性
模擬也有相同結果。上述現象在本論文中皆可藉由自由能概念定性解釋。論文最後模擬水分子為佔有體積的中性軟球,結果顯示離子之擴散係數約小2 個數量級。


Abstract
We apply the equilibrium and the non-equilibrium molecular dynamics sim-ulationsto study the dynamic properties of electrolytes in nanopores. The primitive model and the restrictive primitive model widely used in the sta-tistical mechanics of liquid-state theory were used to model the electrolytes. The electrolytic ions were immersed in water, treated in this work as either a
dielectric continuum ignoring the size of solvent molecules or a macroscopic dielectric continuum (polar property) plus neutral soft spheres, and the whole system is put in a con‾ned space. To simulate a condition closer to processes of practical interest and yet maintain the imulation computationally manage-able,
we consider an in‾nitely long and uncharged cylindrical tube. The equi-librium property of self-di®usion coe± cent and the non-equilibrium property of electric conductivity are computed in terms of electrolytic concentration, particle size and cylindrical radius. Results of simulations for the continuum solvent restrictive primitive model and continuum solvent primitive modelshow normal behavior for the di®usion
coeefcient D vs pore radius R, i.e.,
D decreases with decreasing R, at ionic concentration c¸ =0.1 M, display R-independence
of D at certain threshold c¸ , and an anomalous increase in D
with reducing R at a lower c¸ =0.025 M. The mechanism of the anomaly is
interpreted to arise from the energetic and entropic factors. For the discrete
solvent primitive model, the simulated D is about two order of magnitude less
than the continuum solvent primitive model. This di®erence in D is attributed
to the solvation e®ect. Similar disparities between these latter results were
obtained by others for the discrete restrictive primitive model.


Contents
ABSTRACT 2
I. INTROCUCTION 3
II. MOLECULAR DYNAMICS SIMULATION 5
A. Interparticle potential 5
B. Equilibrium MD simulation 7
C. Nonequilibrium MD simulation 8
III. NUMERICAL RESULTS 9
A. Self-diffusion coefficient: continuum solvent RPM vs continuum solvent
PM 10
B. Self-diffusion coefficient: discrete solvent primitive model 13
C. Conductivity: continuum solvent primitive model 14
IV. SUMMARY AND CONCLUSION 15
References
Figure captions
Figure1.~12.
Appendix A
Appendix B
Appendix C


[1] D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait,and R. MacKinnon, Science 280, 69 (1998).[2] B. Roux and M. Karplus, Annu. Rev. Biophys. Biomol. Struct. 23, 731 (1994).[3] L.R. Forrest and M.S. Sansom 10, 174 (2000).[4] S. Rivera and T.S. Sorenson, Mol. Simul. 13, 115 (1994).[5] M. Lee and K.Y. Chan, Chem. Phys. Lett. 275, 56 (1997).[6] D. Boda, D.D. Henderson and S. Sokolowski, J. Phys. Chem. B 104, 8903 (2000).[7] B. Hribar, V. Vlachy, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. B 104, 11522(2000).[8] M. Lee, K.Y. Chan, D. Nicholson and S. Zara, Chem. Phys. Lett. 307, 89 (2000).[9] Y.W. Tang, I. Szalai and K.Y. Chan, J. Phys. Chem. A 105, 9616 (2001).[10] V. Vlachy and A.D.J. Haymet, J. Electroanal. Chem. 283, 77 (1990).[11] A. Steck and H.L. Yeager, J. Electrochem. Soc. 130, 1297 (1983).[12] C. Gavach, G. Pamboutzoglou, M. Nedyalkov, G. Poucelly, J. Membr. Sci. 45, 37 (1989).[13] G.B. Westermann-Clark and J.L. Anderson, J. Electrochem. Soc. 130, 839 (1983).[14] P.K. Hansma, B. Drake, O. Marti, S.A. Gould and C.B. Prater, Science 243, 641 (1989).[15] B. Sackmann and E. Neher, Single Channel Recording, (Plenum, New York, 1995).[16] R.M. Lynden-Bell and J.C. Rasaiah, J. Chem. Phys. 105, 9266 (1996).[17] G.R. Smith and M.S.P. Sansom, Biophys. J. 73, 1364 (1997).[18] R.S. Eisenberg, Acc. Chem. Res. 3, 117 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 36. 蘇仲卿、張珍田及莊榮輝。利用親和層析法分離豬內胰臟蛋白質水解酵素trypsin和chymotrypsin之中間規模試驗。中國農業化學會誌,19(3):218-225 (1981)。
2. 33. 賴進此。幾丁類物質在生物技術上之應用。食品工業,32(4):52-65(2000)。
3. 22. 陳彥霖。幾丁質及幾丁聚醣在紡織工業之應用。食品工業,32(4):66-73(2000)。
4. 32. 賴淑琪。水產廢棄物蝦、蟹外殼之高度利用。食品工業,11(4):23-28 (1979)。
5. 28. 楊世民、林讚峰。簡介利用回應曲面實驗設計法決定工業微生物的最佳培養基。製酒科技專論彙編,16: 135-150 (1994)。
6. 20. 陳美惠。幾丁聚醣之抑菌作用。食品工業,31(10):29-33 (2000)。
7. 18. 陳文章、劉光哲。回應曲面實驗設計法於嗜鹼性Bacillus sp.生產環狀糊精葡萄糖苷轉移培養基之最適化應用。大同學報,23:294-298(1993)。
8. 17. 袁國芳,幾丁質與幾丁聚醣在食品工業上之應用。食品工業,31(10):19-23(1999)。
9. 16. 袁國芳。幾丁質/幾丁聚醣在膳食與醫療之助益及潛在問題。食品工業,32(4):1-8 (2000)。
10. 15. 張珍田。幾丁質及幾丁聚醣之研究。生命科學簡訊,14(3): 3-8(2000)。
11. 9. 阮進惠,林翰良,羅淑珍。幾丁聚醣水解物之連續式生產及其抑菌作用。中國農業化學會誌,35(6):596-611 (1997)。
12. 8. 李根永、李孟修。Corynebacterium glutamicum在高濃度鹽份培養基脯胺酸發酵之研究。中國農業化學會誌,36(1):57-64 (1998)。