跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李明倫
研究生(外文):Min-Lum Lee
論文名稱:矽離子佈植在P型氮化鎵的材料分析與元件特性之研究
論文名稱(外文):Material Characterizations and DeviceApplications of Si-implanted p-GaN
指導教授:紀國鐘紀國鐘引用關係
指導教授(外文):Gou-Chung Chi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:91
中文關鍵詞:矽離子佈植
外文關鍵詞:Si-implanted
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

摘 要
本實驗是在p型氮化鎵中佈植矽離子,經由氮氣環境下的快速熱退火處理而形成矽離子佈植試片。X-Ray布拉格繞射結果顯示,即使經由1150oC, 60秒快速熱退火處理,仍然無法將結構完全修復。藉由改變離子佈植及熱退火的條件可以將試片的電性由p型(~3´1017cm-3)轉變為n型(2´1017cm-3~2´1019cm-3)。本實驗發現矽原子在典型的矽離子佈植試片中,其活化能(~10 meV以下)比磊晶成長的矽摻雜試片(~15 meV以下)低,且多了一個深層能階(~60 meV)的施體。在光激發光譜的分析中,觀察到一個372nm峰值,它可能是由離子佈植所造成的結構破壞而引發的;另外,還觀察到一個525nm峰值,它可能源自跟磊晶成長式的矽摻雜n型氮化鎵所具有之黃光峰值一樣。
矽離子佈植式p-n二極體的特性分析中,在小的順向操作偏壓(Vj<2V)時,除了單純的複合電流與擴散電流之外,還存在一些由缺陷所造成的額外傳導電流,而這些缺陷的來源有可能是成長時的空缺或錯位,以及離子佈植所造成的結構破壞。在電激發光譜的分析中,觀察到一個430nm峰值,它可能是來自於和鎂有關的受體和未知施體之間的躍遷。另一方面,矽離子佈植式p-n二極體應用在逆向偏壓的操作範圍時,可以當作一個紫外光光檢測器。當外加的逆向壓在1V時,暗電流是50 nA/cm2,而當外加的逆向壓在3V時,暗電流是1.5 A/cm2。這個光檢測器的截止波長大約是365 nm(光響應強度約為 0.33 mA/W),且對紫外光(~365 nm)和可見光(~500 nm)的鑑別度可達260倍。


Abstract
Si ion implantation into p-type GaN followed by rapid thermal annealing (RTA) in N2 has been performed. X-ray diffraction analyses indicated that ion-implanted damage remains even with 1150oC, 60sec RTA. By varying implantation and post-implantation annealing conditions, we could convert carrier concentration from p-type 3´1017cm-3 into n-type 2´1017cm-3~2´1019cm-3. It was found that typical activation energies of Si implants in p-GaN are lower than 10 meV Such activation energies are smaller than those observed from epitaxially grown Si-doped GaN films (~15meV). A deep donor level with activation energy of 60meV was also found from some samples. Photoluminescence (PL) studies show that the peak appears at 372nm might be related to implantation-induced defects. A green emission band was observed from Si-implanted GaN. This green emission may be related to the yellow band observed for the epitaxially grown Si-doped GaN.
Characterizations of GaN n+-p junction diodes formed by Si implantation into p-GaN were also performed by using various techniques including current-voltage(I-V) measurements and electroluminescence(EL) spectroscopy. The current-voltage characteristics at low forward bias region (Vj<2 V) are measured. It might be interpreted as the results are governed by a trap-assisted generation-recombination mechanism rather than a simple recombination current. In addition to the grow-in defects including vacancies(VGa VN) and dislocation, ion implantation would further induce more defects or unrecoverable structural damage in the implanted layers, which these are the source of possible trap-assisted generation-recombination centers, and affect significantly the characteristics of optical and electrical properties. For EL measurements, a blue band emission around 430 nm was observed, which can be attributed to a Mg-related donor-to-acceptor transition. On the other hand, for the application in visible blind UV detector, the Si-implanted planar GaN p-n diodes are also a potential candidate. The current density measured under dark condition is around 1.5 mA/cm2 and 50 nA/cm2 at a reverse bias of 3 V and 1V, respectively. Spectra response measurements revealed a cut-off wavelength of about 365 nm and a peak responsivity of around 0.33 mA/W at 365 nm. In addition, the photodiodes showed a typical visible rejection ratio, which divides the values of the responsivity at 365 nm and at 500 nm, of around 260.


Table of Contents
Abstract………………………………………………………...I
Table of contents……………………………………………...V
Figure Captions……………………………………………VIII
Chapter 1. Introduction …………………………………1
Chapter 2. Experimental techniques and Related Analysis Systems ……………………………3
2-1 Ion-implantation method
2-1.1 Theory of ion implantation
2-1.2 Ion implantation method
2-2 Secondary ion mass spectrometry (SIMS)
2-3 X-Ray diffraction (XRD)
2-3.1 Theory of XRD
2-3.2 XRD measurement system
2-4 Hall measurements
2-4.1 Theory of Hall effect
2-4.2 Hall measurement system
2-5 Photoluminescence (PL)
2-5.1 Theory of PL
2-5.2 PL measurement system
2-6 Responsivity and time response
Chapter 3. Experiments (Sample preparation)………..15
3-1 Preparation of Si-implanted layers for characterization
3-1.1 Mg-doped GaN grown by MOVPE
3-1.2 Procedure of Si ion-implantation into p-GaN bulk layers
3-1.3 Thermal annealing process
3-1.4 Ohmic contact formation
3-2 Fabrication of GaN n+ - p diode formed by Si ion implantion
3-2.1 n+-p junctions formed by Si ion implantation into p-GaN and RTA process
3-2.2 Process of n+-p diodes
Chapter 4. Results and Discussions …………………19
4-1 Characters of Si ion implantation into GaN:Mg
4-1.1 X-ray diffraction analyses of Si-implanted GaN
4-1.2 Hall measurements of Si-implanted GaN
4-1.3 Photoluminescence of Si-implanted GaN
4-2 Characterization of n+-p diodes formed by Si-implanted GaN
4-2.1 Current-voltage characteristics of n+ - p diode
4-2.2 Eletroluminescence of n+ - p diode
4-2.3 Application to UV photodetector
Chapter 5. Conclusions……………………………..…42
References………………………….………………………44
Figures……………………………………………………. 48


References1.J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387 (1976).2.J. H. Edgar, “Properties of Group III Nitrides”, p273(INSPEC, London, United Kingdom, 1994)3.S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan, and R. A. Stall, Appl. Phys. Lett. 67, 1435 (1995).4.J. C. Zolper, H. H. Tan, J. S. Williams, . Zou, D. J. H. Cockayne, S. J. Pearton, M. Hagerott Crawford and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2729 (1997).5.H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton and R. A. Stall, Appl. Phys. Lett. 69, 2364(1996).6.C. J. Eting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang, D. Becher, H. Kou, G. E. Stillman and M. Feng, Appl. Phys. Lett. 73, 3875(1998).7.X. A. Cao, C. R. Abernathy, R. K. Singh, S. J. Pearton, M. Fu, V. Sarvepalli, J. A. Sekhar, J. C. Zolper, D. J. Rieger, J. Han, T. J. Drummond and R. J. Shul, Appl. Phys. Lett. 73, 229(1998).8.W. C. Lai, M. Yokoyama, C. C. Tsai, C. S. Chang, J. D. Guo, J. S. Chan and C. Y. Chang, Jpn. J. Appl. Phys, 38, L802(1999)9.J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, J. Appl. Phys. Vol.91,1845 (2002)10.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, IEEE Electron. Dev. Lett., Vol. 22, 460(2001).11.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, 848(2001).12.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, IEEE Photon. Technol. Lett., Vol. 13, 559(2001).13.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, Jpn. J. Appl. Phys., Vol. 40, pp. 2996-2999 (2001)14.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, Jpn. J. Appl. Phys., Vol. 40, pp. 2762-2764, (2001).15.S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, Appl. Phys. Lett., Volume 78, pp. 312-313 (2001).16.K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, J. Crystal Growth, Vol. 220, pp. 405-412, (2000).17.W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, Jpn. J. Appl. Phys. Lett., Vol. 39, pp. L1138-L1140 (2000).18.J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung, Appl. Phys. Lett. Vol.74, 2340-2342(1999).19.J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu, W. C. Hung, J. S. Bow and Y. C. Yu, J. Vac. Sci & Tech, B.18, 729(2000).20.T. D. Moustakas, T. Lei, and R. J.Molnar, Physica B185, 36(1993)21.C. Liu, B. Mensching, M. Zeitler, K. Volz and B. Rauschenbach, Physical Rev. B57, 25302535(1998)22.S. M. Sze, “ Semiconductor device physics and technology”,(John Wiley, 1985)23.N. F. Mott,” Metal-Insulator Transitions”(Taylor&Francis, Landon,1990)24.I. H. Lee, I.H.Choi, C.R.Lee, and S.J.Son, et al., J. Cryst. Growth., 182, 314(1997)25.L. B. Rowland, K.Doverspike and D.K.Gaskill, Appl. Phys. Lett., 66, 1495(1995)26.T. Tanaka, A. Watanabe, H. Amano, H. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, Appl. Phys. Lett., 65, 2024(1994)27.J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).28.P. Debye and E. M. Conwell, Phys. Rev. 93,693(1954)29.N. F. Mott and W. D. Twose, Adv. Phys., 10, 107(1961). 30.U. Kaufmann, M. Kunzer, M. Maier, H.Obloh, A. Ramakrishnan, B. Santic and P. Schlotter, Appl. Phys. Lett. Vol.72, 1326(1998).31.F. Shahedipour and W. Wessels, Appl. Phys. Lett. Vol.76, 3011(2000).32.J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).33.J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett., Vol.69, 503(1996)34.X. Zhang, P. Kung, D. Walker, A. Saxler and M. Razeghi, Mater. Res. Soc. Symp. Proc, Vol.395, 625(1996)35.J. I. Pankove and J. A. Hutchby, J. Appl. Phys. Vol.47, 5387(1976).36.T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J.Jun, M. Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett. Vol.67, 2188(1995).37.D. M. Hoffman, et al., Phys. Rev. B 52, 16 702 (1995); A. Hoffman,et al., Solid-State Electron. Vol. 41, 275(1997).38.R. A. Abram, G. J. Rees and B. L. H. Wilson, Adv. Phys., Vol.27, 799(1978)39.K. Boer, “Survey of Semiconductor Physics”, van Nostrand Reinhold, New York, 1990.40.H. Yao, and A. Compaan, Appl. Phys. Lett., Vol.57, 147(1990)41.J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. M. Chang, C. C. Liu and W. C. Hung, Appl. Phys. Lett. 74, 2340 (1999).42.R. J. Molnar, T. Lei and T. D. Moustakas, Appl. Phys. Lett., 62,72(1993).43.A. Y. Polyakov, M. Shin, M. Skowronski, R. G. Wilson, D.W. Greve, S. J. Pearton, Solid-State Electron., Vol.41, 703(1997).44.J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, Appl. Phys. Lett., Vol.72, 2841(1998).45.M. M. Anikin, V. V. Evstropov, I. V. Popov, V. N. Rastegaev, A. M. Strel’chuk, and A. L. Syrkin, Sov. Phys. Semicond. 23, 405 (1989)46.J. S. Escher, H. M. Berg, G. L. Lewis, C. D. Moyer, T. U. Robertson, and H. A. Wey, IEEE Trans. Electron. Dev. ED-29, 1463(1982)47.S. Nakamura, T. Mukai and M. Senoh, Jpn. J. Appl. Phys., Vol. 30, L1998(1991).48.H. Amano, M. Kito, K. Hiramatsu and I. Aakasaki, Jpn. J. Appl. Phys., Vol. 28, L2112(1989).49.J. I. Pankove, Optical Processes in Semiconductors ( Prentice-Hall, New JERSEY, 1971 ), PP. 147-152.50.H. C.Casey,Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett., 68, 2867(1996).51.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Vol.34, L797 (1995).52.S. Nakamura, T. Mokia and M. Senoh, Appl. Phys. Lett. Vol.64, 1689 (1994).53.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, Appl. Phys. Lett. Vol.70, 868 (1996).54.M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, Appl. Phys. Lett. Vol.66, 1083 (1995).55.O. Aktas, Z. F. Fan, S. N. Mmohammad, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. Vol.69, 3872 (1996).56.M. A. Khan, A. R. Bhattarai, J. N. Kkuznia, and D. T. Olson, Appl. Phys. Lett. Vol.63, 1214(1993).57.J. Pankove, S. S. Chang, H. C. Lee, R. J. Molnar, T. D. Moustakas, and B. Van Zeghbroeck, IEDM, Vol.94, 389(1994).58.G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars,U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. Vol.75, 247(1999).59.J. Z. Li, J. Y. Lin, H. X. Jiang, and M. A. Khan, Vol.72, 2868(1999).60.Mohammad A. Saleh, Majeed M. Hayat, Oh-Hyun Kwon, Archie L. Holmes, Jr., Joe C. Campbell, Bahaa E. A. Saleh and Malvin C. Teich, Appl. Phys. Lett. Vol.79, 4037(2001). 61.M. A. Khan, J. N. Kkuznia, D. T. Olson, and M. Blasingame, Appl. Phys. Lett. Vol.63, 2455(1993).62.M. Razeghi and A. Rogalski, J. Appl. Phys., Vol.79, 7433(1996) and references therein.63.D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz, and M. Razeghi, Appl. Phys.Lett., Vol.72, 3303(1996), and references therein.64.Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, Appl. Phys.Lett., Vol.70, 2277(1997)65.A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I. K. Shmagin, Y. C. Chang, J. F. Muth, and R. M. Kolbas, Appl. Phys.Lett., Vol.72, 551(1998)66.P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys.Lett., Vol.73, 975(1998)67.J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, D. Lambert, J. D. Schaub, R. D. Dupuis and J. C. Compbell, Electron. Lett. Vol. 34, 692(1998)68.W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. Mcpherson and H. Marsh, Appl. Phys. Lett. Vol.73, 1086(1998).69.David Wood, Optoelectronic Semiconductor Devices(Prentice Hall, London,1994)70.X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler and M. Razeghi, Appl. Phys. Lett., Vol. 67, 2028(1995).71.S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch. 10, Fig 19

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top