跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:車學義
研究生(外文):Hsueh-Yi Che
論文名稱:微液滴對微熱點之冷卻
論文名稱(外文):Cooling of micro-hot-spot
指導教授:周復初周復初引用關係
指導教授(外文):Fu-Chu Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:83
中文關鍵詞:微熱點冷卻微液滴
外文關鍵詞:micro hot spotmicro dropletcooling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

微小化是現今微電子及微光電系統的趨勢,然而隨著尺寸越來越小,其散熱之問題亦相形重要之。但是目前可應用於微熱點冷卻之各種冷卻方法,因受限於尺寸或是材質而難有理想之冷卻效率。
本研究乃採用微液滴主動冷卻微熱點的方式,即利用冷卻介質之相變化,直接帶走微熱點上的熱而達到冷卻目的,以期能在高效能的微小光機電元件之冷卻工程上有更新的突破。
由本實驗室之實驗結果顯示,當微熱點在80 ℃以下,使用單一微液滴冷卻時,微液滴皆可達到不錯的冷卻效果。但當微熱點在80 ℃以上,則會因為汽泡環(Bubble ring)造成冷卻效果下降。幸而一般的微小光電元件也很少會有如此的高溫,因此本實驗使用50 μm直徑之純水微液滴冷卻微熱點(尺寸為75 μm × 75 μm及50 μm × 50 μm)確是一可行的冷卻方法。


It is the current trend of the micro-electronic and micro-optical systems to minimize the size. As the size of these micro-devices become smaller, the problem of heat dissipation would be more important. Although several methods have been applied for the Micro-hot-spot, such as Thermoelectric Cooling, Micro Heat Pipe, and Micro channel, these systems do not really get the cooling efficiency because of their limitation of size or material. The goal of our research, called Active micro-droplet cooling method, is going to make use the characters of phase change in our cooling liquid, to take heat away from the Micro-hot-spot directly. We hope this system could provide a higher efficiency in cooling engineering for the micro-electronic and micro-optical systems.


Ⅰ 摘要………………………………………………………………………….Ⅰ
Ⅱ 目錄………………………………………………………………………….Ⅱ
Ⅲ 表目錄………………………………………………………………………Ⅳ
Ⅳ 圖目錄………………………………………………………………………Ⅴ
第一章 緒論…………………….…………………………………………….1
1-1前言…………………….……………………………………………1
1-2文獻回顧……………………………………………………………3
1-2 (1) 微尺度熱傳…………………….……………………………3
1-2 (2) 液滴之相關研究………………………………………………6
1-2 (2) A. 液滴撞擊之研究………………...……………………6
1-2 (2) B. 使用噴墨頭液滴之研究……………………………11
1-2 (2) C. 液滴蒸發之研究…………………...………………12
第二章 實驗設備及方法……………………………………………15
2-1實驗設備………………………………………………………….15
2-1-1 微液滴控制系統……………………………………………...15
2-1-2 微熱點之模擬與溫度量測系統……………………………...16
2-1-3 影像擷取系統………………………………………………….18
2-1-4 微調定位系統 ………………………………………………...19
2-2實驗步驟……………………………………………….…...20
2-3實驗分析……………………………………………………..22
2-3-1 微液滴尺寸研究………………………………………………22
2-3-1 75 μm × 75 μm之感測器實驗分析(實驗一)…………23
2-3-2 50 μm × 50 μm之感測器實驗分析(實驗二)…………24
第三章 結果與討論……………………………………………………….26
3-1實驗一 : 75μm × 75μm之微熱點冷卻…………...26
3-2實驗二 : 50μm × 50μm之微熱點冷卻…………...31
第四章 總結………………………………………………………………….34
A.文獻回顧…………………………………………………………….……..36
B.附表…………………………………………………………………………..39
C.附圖…………………………………………………………………………..48


1. H. Brugger and P. W. Epperlein, Mapping of local temperature on mirrors of GaAs / AlGaAs laser diodes, Appl. Phys. Lett., vol. 56, no. 11, pp. 1049-1051, 1990.2. F. C. Chou, J. G. Weng, and C. L. Tien, Cooling of micro hot spots by oscillatory flow, Proceeding of the Eleventh International Symposium on Transport Phenomena, No. 55, pp. 324-330, 1998.3. M. I. Flik, B. I. Choi, and K. E. Goodson, Heat transfer regimes in microstructures, J. Heat Transfer, vol. 114, pp.666-674, 1992.4. M. I. Flik and C. L. Tien, Size effect on thermal conductivity of high-Tc thin-film superconductors, J. Heat Transfer, vol. 112, pp.872-881, 1990.5. G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structure, J. Heat Transfer, vol. 119, pp. 220-229, 1997.6. C. L. Tien and G. Chen, Challenges in microscale conductive and radiative heat transfer, J. Heat Transfer, vol. 116, pp. 799-807, 1994.7. I. Mudawa and W. S. Valentine, Determination of the local quench curve for spray —cooled metallic surfaces, J. Heat Treating, vol.7, no.2, pp.107-121, 1989.8. W. P. Klinzing, J. C. Rozzi, and I. Mudawar, Film and transition boiling corrections for quenching of hot surfaces with water sprays, J. Heat Treating, vol. 9, no. 2, pp. 91-103, 1992.9. K. A. Estes and I. Mudawar, Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surface, Int. J. Heat Mass. Transfer, vol. 38, no. 16, pp. 2895-2996, 1995.10. J. D. Bernardin and I. Mudawar, Film boiling heat transfer of droplet streams and sprays, Int. J. Heat. Mass. Transfer, vol. 40, no. 11, pp. 2579-2593, 1997.11. I. Mudawar , J. D. Bernardin, and C. J. Stebbins , Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Int. J. Heat. Mass. Transfer, vol. 40, no. 2, pp. 247-267, 1997.12. H. Fujimoto, N. Hatta, H. Asakawa, and T. Hashimoto, Predictable modeling of heat transfer coefficient between spray water and a hot surface above the Leidenfrost temperature, ISIJ International, vol. 37, no. 5, pp. 492-497, 1997.13. S. Chandra and C. T. Avedisian, On the collision of a droplet with a solid surface, Proc. R. Soc. Lond. A, vol. 432, pp. 13-41, 1991.14. B. L. Scheller and D. W. Bousfield, Newtonian drop impact with a solid surface, AIChE Journal, vol. 41, no. 6, pp. 1357-1367, 1995.15. Y. S . Ko and S. H. Chung, An experiment on the breakup of impinging droplets on a hot surface, Experiments In Fluids, vol. 21, pp. 118-123, 1996.16. T. Mao, C. S. K. David and H. Tran, Spread and rebound of liquid droplets upon impact on flat surface, AIChE Journal, vol. 43, no. 9, pp. 2169 - 2179, 1997.17. B. Xing, C. M. Megaridis, D. Poulikakuos and H. Hoang, An investigation of key factors affecting solder microdroplet deposition, Journal of Heat Transfer, vol. 120, pp.259-270, 1998.18. D. Attinger, Z. Zhao and D. Poulikakos, Visualization and measurement of picoliter-size molten droplet impact dynamics and solidification on a surface, ASME HTD, vol. 364-3, pp.159-169, 1999.19. D. Attinger, Z. Zhao and D. Poulikakos, An experimental study of molten microdroplet surface deposition and solidification:Transient behavior and wetting angle dynamics, Journal of Heat Transfer, vol. 122, pp. 544-556. 2000.20. J. F. Oliver, Initial stages of ink jet drop impaction, spreading, and wetting on paper, Tappi Journal, vol. 67, no. 10, pp. 90-94,1984.21. A. Asai, M. shioya, S. Hirasawa, and T. Okazaki, Impact of an ink drop on paper, J. Image Science and Technology, vol. 37, pp. 205-207, 1993.22. S. Chandra and C. T.Avedisian, Observation of droplet impingment on a ceramic porous surface, Int. J. Heat Mass Transfer, vol. 35, no. 10, pp. 2377-2388, 1992.23. K. Takano, I. Tanasawa and S. Nishio, Active enhancement of evaporation of a liquid drop on a hot solid surface using a static electric field, Int. J. Heat and Mass Transfer, vol. 37, suppl. 1, pp. 65-71, 1994.24. C. H. Wang, C. J. Sun and H. C. Kuo, An experimental investigation of heat transfer of a droplet impinging upoin a hot surface, Int. Comm. Heat Mass Transfer, vol. 24, no. 1, pp.65-78, 1997.25. N. Hatta, H. Fujimoto, H. Takuda, K. Kinoshita, and O. Takahashi, Collision dynamics of a water droplet impinging on a rigid surface above the Leidenfrost temperature, ISIJ International, vol. 35, no. 1, pp. 50-55, 1995.26. T. Y. Xiong and M. C. Yuen, Evaporation of a liquid droplet on a hot plate, Int. J. Heat Mass Transfer, vol. 34, no. 7, pp. 1881-1894, 1991.27. S. Chandra, M. di Marzo, Y. M. Qiao and Tartarini, Effect of liquid-solid contactangle on droplet evaporation, Fire Safety Journal, vol. 27, pp. 141-158, 1996.28. M. Pasandideh-Fard, S. D. Aziz, S. Chandra and J. Mostaghimi, Cooling effectiveness of a water drop impinging on a hot surface, Int. J. Heat Fluid Flow, vol. 22, pp. 201-210, 2001.29. J. Lee, J. Kim, and K. T. Kiger, Time- and space-resolved heat transfer characteristics of single droplet cooling using microscale heater array, Int. J. Heat Fluid Flow, vol. 22, pp. 188-200, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top