跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡建宏
研究生(外文):Chien-Hung Tsai
論文名稱:衰逝全反射生醫感測儀之研製
論文名稱(外文):Attenuated total reflection biosensors
指導教授:陳顯禎周晟周晟引用關係李正中李正中引用關係
指導教授(外文):S.-J. Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:表面電漿共振衰逝全反射
外文關鍵詞:surface plasmon resonanceattenuated total reflection
相關次數:
  • 被引用被引用:7
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  利用表面電漿共振(surface plasmon resonance,SPR)現象所研發出之即時感測器,近年來被廣泛地研究與討論。其具有靈敏度高、不需標定(label free)、動態分析(kinetic study)、即時檢測並可大量平行篩檢(high-throughput screening)等優點。在生醫檢測方面,已逐漸受到重視。
就加入稜鏡耦合方式之角度量測衰逝全反射感測儀,其解析度則時常受限於角度旋轉儀器的條件,無法提升。如何有效利用旋轉平台之解析度,及提升感測靈敏度及解析度,則是本文的重點。以創新的光路設計,配合多層膜之感測器設計,同時量測TM及TE模態之反射光強,花最少的檢測時間及次數,得到最多的待測物質反應資訊,且即時修正正確的最小反射強度角度值。
介電常數與膜厚的計算方式求解,經由Lorentzian近似關係式配合Fresnel反射係數方程式,可由一次量得之SPR反應曲線圖形,即時求得其值,再配合最佳化線性資料分析(optimal linear data analysis),可將誤差降至5%以內。
  配合所有的機構及計算,在生物分子反應分析(biomolecular interaction analysis,BIA)上,可即時得知反應之動力學,並進而定量分析分子濃度與膜厚,此是傳統之螢光標定法所無法完成的。
The biosensors based on surface plasmon resonance (SPR) has been often used as tools for directly detecting the kinetic interaction of unlabelled biological molecules at surface in real time. The SPR biosensors have many advantages over others, such as the high sensitivity, label free, kinetic study, and high-throughput screening etc.. The potential of this technology is gradually being noticed in the field of biological diagnostic.
The resolution of detector which is made by the method of attenuated total reflection is often limited by the goniometer. The topic in this paper is to efficiently use a novel resolution of the goniometer to improve sensitivity and resolution. Use design of optical system and multi-layer sensors, we can measure the reflected light, both TM and TE modes, simultaneously, use less detector time and frequency get more information and we can modify SPR angle.
When the dielectric constant and thickness of unknown medium problem are solved, we can reduce the tolerance under 5% by optimal linear data analysis with the data solved by Lorentzian type relation and Fresnel equations.
The advantage of this biosensor is that we can get kinetic study by using this system, and analyze molecular concentration and thickness. Therefore, the traditional fluorescence can not achieve this requirement.
摘要……………………………………………………………………I
誌謝……………………………………………………………………III
目錄……………………………………………………………………IV
圖目錄…………………………………………………………………VI
表目錄…………………………………………………………………VIII
第一章  緒論…………………………………………………………1
 1-1 前言……………………………………………………………1
 1-2 研究動機與目的………………………………………………1
1-3 文獻回顧………………………………………………………2
  1-3-1 光柵式與稜鏡式耦合之表面電漿共振感測器…………4
  1-3-2 角度偏移與強度變化探測………………………………7
  1-3-3 多層膜架構之表面電漿共振……………………………8
第二章  衰逝全反射…………………………………………………10
 2-1 表面電漿波現象………………………………………………10
  2-1-1 光激發表面電漿波………………………………………14
  2-1-2 有限厚度金屬層之Kretschmann 三層組態反射率……15
 2-2 決定金屬薄膜之介電常數與厚度……………………………19
  2-2-1  Lorentzian 近似關係式………………………………19
  2-2-2 介電常數與厚度之解……………………………………22
 2-3 多層膜之衰逝全反射…………………………………………26
  2-3-1 四層組態之反射率………………………………………27
  2-3-2 三層介電質平板…………………………………………28
  2-3-3 多層反射干涉現象與表面電漿共振之關係……………30
第三章  衰逝全反射生醫感測儀……………………………………37
 3-1 表面電漿共振感測器之研製…………………………………37
 3-2 衰逝全反射生醫感測儀之設計與製造………………………42
  3-2-1 光路之設計………………………………………………42
  3-2-2 訊噪比提昇………………………………………………46
  3-2-3 旋轉平台之精準操控……………………………………48
 3-3 人機介面程式之開發…………………………………………50
  3-3-1 多項式的曲線擬合………………………………………51
  3-3-2 入射角度修正……………………………………………51
  3-3-3 系統操控…………………………………………………52
第四章  實驗結果與討論……………………………………………57
 4-1 多層膜衰逝全反射感測器之靈敏度與優缺點………………57
 4-2 氮氣與氬氣折射係數差異之量測……………………………58
 4-3 蛋白質結合實驗………………………………………………61
 4-4 DNA 雜交實驗…………………………………………………67
第五章  結論…………………………………………………………70
參考文獻 ………………………………………………………………72
圖目錄
圖1-1  衰逝波…………………………………………………………3
圖1-2  光柵式耦合……………………………………………………5
圖1-3  稜鏡式耦合……………………………………………………5
圖1-4  衰逝全反射組態………………………………………………6
圖2-1  x 方向之電荷振盪及表面電漿傳遞的電磁場分佈圖………10
圖2-2  衰逝全反射方式之色散關係曲線圖…………………………14
圖2-3  單介面系統……………………………………………………16
圖2-4  雙介面之系統…………………………………………………17
圖2-5  由最小反射強度圖形…………………………………………22
圖2-6  SPR 曲線圖……………………………………………………23
圖2-7  介電常數與膜厚收斂情形……………………………………25
圖2-8  四層架構之系統………………………………………………27
圖2-9  三層介電質平板………………………………………………29
圖2-10 四層結構之稜鏡耦合式衰逝全反射感測器…………………31
圖2-11 三層結構(稜鏡/金/空氣)TE模態反射光強圖……………31
圖2-12 四層結構(稜鏡/金/SiO2/空氣) TE模態反射光強圖……32
圖2-13 四層結構(稜鏡/金/SiO2/空氣) TE模態反射光強圖……33
圖2-14 四層結構(稜鏡/金/SiO2/空氣) TE模態反射光強圖……34
圖2-15 四層結構(稜鏡/金/SiO2/空氣) 反射光強圖……………35
圖3-1  Prism/Cr/Au/Air 結構之表面電漿共振量測圖形…………39
圖3-2  金膜之 AFM表面量測圖形……………………………………41
圖3-3  衰逝全反射生醫感測儀光路示意圖…………………………43
圖3-4  感測儀原型機…………………………………………………44
圖3-5  參考光路圖……………………………………………………47
圖3-6  雷射訊號強度圖………………………………………………47
圖3-7  訊號頻譜圖……………………………………………………47
圖3-8  五相式步進馬達示意圖………………………………………49
圖3-9  程式概略流程圖………………………………………………50
圖3-10 角度修正示意圖………………………………………………52
圖3-11 主畫面…………………………………………………………53
圖3-12 HUBER 可程式馬達控制器之設定對話盒……………………54
圖3-13 衰逝全反射之掃瞄設定對話盒………………………………54
圖3-14 衰逝全反射之表面電漿共振量測圖形………………………55
圖3-15 生化感測掃瞄設定對話盒……………………………………55
圖3-16 時間與角度變化量測關係圖…………………………………56
圖4-1  多層結構之角度量測衰逝全反射情形………………………57
圖4-2  氣體量測之機構圖……………………………………………59
圖4-3  氮氣、氬氣切換實驗…………………………………………59
圖4-4  硫醇化合物(thiol,CH3(CH2)7SH)與金膜表面反應情形62
圖4-5  蛋白質吸附反應情形…………………………………………63
圖4-6  蛋白質吸附後之金膜表面情形………………………………65
圖4-7  金膜表面,硫醇化合物及蛋白質的結合示意圖……………66
圖4-8  DNA 雜交反應圖形……………………………………………68
表目錄
表1-1 表面電漿波之色散關係…………………………………………4
表3-1 衰逝全反射生醫感測儀使用之元件與儀器……………………45
表4-1 氣體切換各階段所量得角度變化量之標準差…………………60
[1] R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 1957;106:874.[2] C.J. Powell and J.B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev. 1960;118:640.[3] J. Homola and S.S. Yee, “Surface plasmon resonance sensors: review,” Sensors and Actuators 1999;B 54:3-15.[4] V. Owen, “Real-time optical immunosensors — a commercial reality,” Biosensors & Bioelectronics 1997;12 No.1.[5] C.C. Teng and H.T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 1990;56(18):1734-1736.[6] Y. Jiang, Z. Cao, G. Chen, X. Dou, and Y. Chen, “Low voltage electro-optic polymer light modulator using attenuated total internal reflection,” Optics & Laser Technolory 2001;33:417-420.[7] G.G. Nenninger, J. Homola, S.S. Yee, and P. Tobiska, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sensors and Actuators 2001;B 74:145-151.[8] G. Höhler and E. A. Niekisch, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag Berlin Heidelberg, 1988. [9] K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics 1987:25-78.[10] T.M. Chinowsky, L.S. Jung, and S.S. Yee, ”Optimal linear data analysis for surface plasmon resonance biosensors,” Sensors and Actuators 1999;B 54:87-97.[11] J.J. Chyou, S.-J. Chen, J.T. Chou, et al,“Multi-experiment linear data analysis for ATR biosensors ,“ SPIE 2002;4819.[12] M. Born and E. Wolf, Principles of Optics, Pargamon, New York, 1964.[13] 李正中, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 1999.[14] J. Davies, Surface analytical techniques for probing biomaterial processes, CRC Press. Inc., 1996.[15] Y. Cheng, C.H. Lin, Y.R. Chang, L. Hsu, and M.K. Chyu, “Electro-optically modulated biomolecular-interaction analysis sensor,” SPIE 2000;4082.[16] H.J. Watts, D. Yeung, and H. Parkes “Real-time detection and quantification of DNA hybridization by an optical biosensor,” Analytical Chemistry, 1995; 23:16.[17] F.F. Bier, F. Kleinjung, and F.W. Scheller, “Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor,” Sensors and Acturators 1997;B 38-39:78-82.[18] F.F. Bier and F.W. Scheller, “Label-free observation of DNA-hybridisation and endonuclease activity on a wave guide surface using a grating coupler,” Biosensors & Bioelectronics 1996;11(6/7):669-674.[19] J. Melendez, R. Carr, D.U. Bartholomew, et al, “A commercial solution for surface plasmon sensing,” Sensors and Actuators 1996;B 35-36:212-216.[20] S. Toyama, A. Shoji, Y. Ikariyama, and N. Doumae, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” Sensors and Actuators 2000;B 65:32-34.[21] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators 1983;4:299-304.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top