跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊德威
研究生(外文):Der-Uei Yang
論文名稱:利用微極彈性理論分析蜂巢式結構之波桑比效應
論文名稱(外文):Analysis of the effect of Poisson's ratio for the honeycomb structure using the micropolar elasticity theory
指導教授:黃豐元黃豐元引用關係
指導教授(外文):Fuang-Yuan Huang
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:微極彈性理論有限元素法蜂巢式結構波桑比
外文關鍵詞:Poisson's ratiohoneycomb structurefinite element methodmicropolar elasticity theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
封面
中文摘要
英文摘要
謝誌
目錄
圖目錄
表目錄
符號說明
第一章緒論
1-1研究動機
1-2文獻回顧
1-3研究方法
1-4論文架構
第二章微極彈性理論簡介
2-1前言
2-2微極彈性基本理論
2-3二維微極彈性理論
第三章二維微極彈性理論之有限元素法
3-1前言
3-2線性三角形元素
3-3等參元素
3-4連鎖法則
3-5應變計算
3-6應力計算
3-7能量法
3-8數值積分
第四章微極彈性方形板波桑比效應之探討
4-1前言
4-2收斂測試
4-3微極楊氏模數Em對波桑比值之影響
4-4微極波桑比Vm對波桑比值之影響
4-5特徵長度l與力偶因子N對波桑比值之影響
4-6微極彈性常數λ對波桑比值之影響
4-7微極彈性常數μ*對波桑比值之影響
4-8微極彈性常數κ對波桑比值之影響
4-9微極彈性常數γ對波桑比值之影響
4-10結論
第五章微極彈性蜂巢式結構波桑比效應之研究
5-1前言
5-2微極彈性蜂巢式結構-幾何形狀之影響
5-3微極彈性蜂巢式結構-微極常數之影響
第六章總結論與未來研究方向
參考文獻
作者簡介


[1] Y. C. Fung, Foundation of Solid Mechanics, Prentice-Hall, Inc. Englewood Cliffs, N. J., 1968.[2] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = -1”, Journal of Elasticity, Vol. 15, pp. 427-430, 1985.[3] K. E. Evans, “Tensile network microstructures exhibiting negative Poisson’ s ratios”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1870-1876, 1989.[4] U. D. Larsen, O. Sigmund and S. Bouwstra, “Design and fabrication of compliant micromechanisms and structure with negative Poisson’s ratio”, Journal of micrielectromechanical systems, Vol. 6, No. 2, pp. 99-106, 1997.[5] R. Lakes, “Foam structures with a negative Poisson’s ratio”, Science, Vol. 235, pp. 1038-1040, 1987.[6] B. D. Caddock and K. E. Evans, “Microporous materials with negative Poisson’s ratios: I. Microstructure and mechanical properties”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1877-1882, 1989.[7] K. E. Evans and B. D. Caddock, “Microporous materials with negative Poisson’s ratios: II. Mechanisms and interpretation”, Journal of Physics D: Applied Physics, Vol. 22, pp. 1883-1887, 1989.[8] W. E. Warren and A. M. Kraynik, “Foam mechanics: The linear elastic response of two-dimensional spatially periodic cellular materials”, Mechanics of Materials, Vol. 6, pp. 27-37, 1987.[9] T. L. Warren, “Negative Poisson’s ratio in a transversely isotropic foam structure”, Journal of Applied Physics, Vol. 6, No. 15, pp. 7591-7594, 1990.[10] J. B. Choi and R. S. Lakes, “Non-linear properties of polymer cellular materials with a negative Poisson’s ratio”, Journal of Materials Science, Vol. 27, pp. 4678-4684, 1992.[11] J. Lee, J. B. Choi and K. Choi, “Application of homogenization FEM analysis to regular and re-entrant honeycomb structures”, Journal of Materials Science, Vol. 31, pp. 4105-4110, 1996.[12] J. B. Choi and R. S. Lakes, “Design of a fastener based on negative Poisson’s ratio foam”, Cellular Polymers, Vol. 10, No. 3, pp. 205-212, 1991.[13] W. Voigt, “Theoretische studin uber die elasticitusverhultnisse der kystall”, Ahandlungen der konigllshaft der wissenshaften zu gottingen, Vol. 24, Gottingen, 1887.[14] E. Cosserat and F. Cosserat, “Theorie des corps deformables”, Paris, A. Hermann and Sons. 1909.[15] R. D. Mindlin and H. F. Tierstn, “Effects of couple stress in linear elasticity”, Archive for Rational Mechanics and Analysis, Vol. 11, pp. 415-448, 1962.[16] A. E. Green and R. S. Rivlin, “Directors and multipolar displacements in continuum mechanics”, International Journal of Engineering Science, Vol. 2, pp. 611-620, 1965.[17] A. C. Eringen and E. S. Suhubi, “Nonlinear theory of simple micro-elastic solids-I“, International Journal of Engineering Science, Vol. 2, pp. 189- 203, 1964.[18] A. C. Eringen, “Linear theory of micropolar elasticity”, Journal of Mathematics and Mechanics, Vol. 15, No. 6, pp. 909-923, 1966.[19] A. C. Eringen, “Theory of micropolar fluids”, Journal of Mathematics and Mechanics, Vol. 16, pp. 1-18, 1966.[20] A. C. Eringen, Fracture, in Liebowitz, M. (Ed.), Academic Press, New York, 2, pp. 621-729, 1968.[21] T. R. Tauchert, W. D. Claus and T. Ariman, “The linear theory of micropolar thermoelasticity”, International Journal of Engineering Science, Vol. 6, pp. 37-47, 1968.[22] D. Iesan, “Existence theorems in the theory of micropolar elasticity”, International Journal of Engineering Science, Vol. 8, pp. 777-791, 1970.[23] P. P. Teodorescu (Editor), Actual Problems in Solid Mechanics, Vol. 1, ed., Academiei, Bucharest, 1975.[24] L. Dragos, “Fundamental solutions in micropolar elasticity”, International Journal of Engineering Science, Vol. 22, pp. 265-275, 1984.[25] S. C. Cowin, “An incorrect inequality in micropolar elasticity theory”, Zeitschrift fur Angewandte Mathematik und Physik: ZAMP (Journal of Applied Mathematics and Physics), Vol.21, pp. 494-497, 1970.[26] R. D. Gauthier, Analytical and Experimental Investigations in Linear Isotropic Micropolar Elasticity, doctoral dissertation, University of Colorado, 1974.[27] R. D. Gauthier and W. E. Jahsman, “A quest for micropolar elastic constants”, Journal of Applied Mechanics, Transactions of ASME, Vol. 42, pp. 369-374, 1975.[28] J. F. C. Yang and R. S. Lakes, “Transient study of couple stress effects in compact bone: torsion”, Journal of Biomechanical Engineering, Transactions of ASME, Vol. 103, pp. 275-279, 1981.[29] R. S. Lakes, “Dynamical study of couple stress effects in human compact bone”, Journal of Biomechanical Engineering, Trans-actions of ASME, Vol. 104, pp. 6-11, 1982.[30] S. Nakamura, R. Benedict and R. Lakes, “Finite element method for orthotropic micropolar elasticity”, International Journal of Engineering Science, Vol. 22, No. 3, pp. 319-330, 1984.[31] J. T. Yeh and W. H. Chen, “Shell elements with drilling degree of freedoms based on micropolar elasticity theory”, International Journal for Numerical Methods in Engineering, Vol. 36, pp. 1145-1159, 1993.[32] F. Y. Huang and K. Z. Liang, ”Torsional analysis of micropolar elasticity using the finite element method”, International Journal of Engineering Science, Vol. 32, No. 2, pp. 347-358, 1994.[33] C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.[34] C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course, Computational Mechanics Publication, Southampton Boston, 1989.[35] A. N. Das and P. K. Chaudhuri, “A note on boundary elements for micropolar elasticity”, International Journal of Engineering Science, Vol. 30, No. 3, pp. 397-400, 1992.[36] K. Z. Liang and F. Y. Huang, “Boundary element method for micropolar elasticity”, International Journal of Engineering Science, Vol. 34, No. 5, pp. 509-521, 1996.[37] F. Y. Huang and K. Z. Liang, “Boundary element analysis of stress concentration in micropolar elastic plate”, International Journal for Numerical Methods in Engineering, Vol. 40, pp. 1611-1622, 1997.[38] F. Y. Huang, B. H. Yan, J. L. Yan and D. U. Yang, “Bending analysis of micropolar elastic beam using 3-D finite element method”, International Journal of Engineering Science, Vol. 38, pp. 275-286, 2000.[39] T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Element in Engineering, 2nd ed. Prentice-Hall International, Inc, 1997.[40] S. Nakamura and R. Lakes, “Finite element analysis of Saint-Venant end effects in micropolar elastic solids”, Engineering Computations. Vol. 12, pp. 571-587, 1995.[41] E. Hinton and D. R. J. Owen, An Introduction to Finite Element Computations, Swansea, UK: Pineridge Press, 1979; Taipei: Kai Fa Book, 1982.[42] T. Y. Yang, Finite Element Structural Analysis, Prentice-Hall, Inc. Englewood Cliffs, N. J., 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top