(44.192.112.123) 您好!臺灣時間:2021/03/01 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂中偉
研究生(外文):Chung-wei Lu
論文名稱:以熱交換器法生長氧化鋁單晶之模擬分析
論文名稱(外文):Numerical Simulation of Sapphire Crystal Growth using HEM
指導教授:陳志臣
指導教授(外文):Jyh-Chen Chen
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:熱交換器法氧化鋁單晶數值模擬單晶生長
外文關鍵詞:sapphireHEMnumerical simluationcrystal growth
相關次數:
  • 被引用被引用:8
  • 點閱點閱:511
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
封面
摘要
英文摘要
致謝
符號表
圖表目錄
第一章緒論
1.1熱交換器法生長氧化鋁單晶之簡介
1.2文獻回顧
1.3研究動機
1.4對於結果與討論的說明
第二章HEM長晶模擬的分析模式
2.1影響長晶熱流場的因素
2.2二維熱對流模擬之模式(MODELLING)
2.3三維模擬之方程式
第三章HEM長晶模擬的數值方法
3.1FIDAP的主要特色
3.2模擬的項目
第四章參數之間的關係
4.1取熱參(HC及TREF)的影響
4.2取熱區大小(R/RC)的影響
4.3加熱參數(HI及TIREF)的影響
第五章各種參數對長晶的影響
5.1溫度梯度的影響
5.2不同坩鍋形狀的影響
5.3不同坩鍋壁的影響
第六章單晶材料熱傳導係數之影響
6.1固液區熱傳導係數同時改變之影響
6.2單獨改變固液區熱傳導係數之影響
6.3單晶材料非等向性熱傳道係數的影響
第七章三維單晶生長熱流場的分析
7.1三維解與二維解之比較
7.2非等向性熱傳導係數
第八章結論
參考文獻
附錄一:HEM長晶設備與長晶模擬之關係
A.1供熱與絕熱系統
A.2真空系統
A.3控制系統
A.4熱交換器系統
A.5量測觀察系統
A.6長晶過程及現象之探討
附錄二:加熱棒與坩堝間視角因子(VIEW FACTOR)的計算
1.S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon and T. I. Kim, “Evaluation of nanopipes in MOCVD grown (0001)GaN/Al2O3 by wet chemical etching”, Journal of Crystal Growth 191 (1998) 275.2.S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Applied Physsics Letters 64 (1994) 1687. 3.D. Viechnicki and F. Schmid, “Growth of sapphire disk from the melt by a gradient furnace technique”, Journal of the American Ceramic Society-Discussions and Notes 53:9(1970)528.4.F. Schmid and D. J. Viechnicki, “Apparatus and method for undirectionally solidifying high temperature material”, U.S. Patent 3,653,432 (1972).5.D. Viechnicki and F. Schmid, “Crystal growth using the heat exchanger method (HEM) ”, Journal of Crystal Growth 26 (1974) 162.6.F. Schmid, “Crystal Growing “, U.S. Patent 3,898,051 (1975).7.D. Viechnicki, F. Schmid, and J. W. McCauley, “ Growth of nearly stoichiometric MgAl2O4 spinel single crystals by a gradient furnace technique ”, Journal of Applied Physics 43(1972)4508.8.J. L. Caslavsky and D. Viechnicki, “Melt growth of Nd:Y3Al5O12(Nd:YAG) using the heat exchanger method (HEM) “, Journal of Crystal Growth 46 (1979) 601.9.F. Schmid and D. J. Viechnicki, “Crystal Growing“, U.S. Pat. 4,256,530 (1981).10.F. Schmid, C. P. Khattak and M.B. Smith, “Growth of Bismuth Germanate crystal by the Heat Exchanger Method “, Journal of Crystal Growth 70 (1984) 466.11.F. Schmid and C.P. Khattak, “Growth of Co:MgF2 and Ti:Al2O3 crystals for solid state laser applications”, Tunable Solid State Lasers, Proceedings of the First International Conference (1985) 122.12.F. Schmid and C.P. Khattak, “ Growth of near-net-shaped sapphire domes using the heat exchanger method ”, Materials Letters 7(1989)318.13.J. L. Caslavsky, “The growth of large diameter single crystals by vertical solidification of the melt “, Crystal Growth of Electronic Materials 10(1985)113.14.A. Horowitz, S. Biderman, G. Ben Amar and U. Laor, M. Weiss and A. Stern, “Growth of single crystals of optical materials via the gradient solidification method ”, Journal of Crystal Growth 85 (1987) 215.15.S. Biderman, A. Horowitz, Y. einav and G. Ben Amar, “Production of sapphire domes by the growth of near net shape single crystals ”, SPIE Passive Materials for Optical Elements 1535 (1991) 27.16.J. W Xu, Y. Z. Zhou, G. G. Zhou, K. Xu, P. Z. Deng and J. Xu, “Growth of large-sized sapphire boules by temperature gradient technique (TGT)”, Journal of Crystal Growth 193 (1998) 123. 17.P. Z. Deng, J. G. Qiao, B. Hu, Y. Z. Zhou and, M. Z. Zhang, “Perfection and laser performances of Nd:YAG crystals grown by temperature gradient technique (TGT) ”, Journal of Crystal Growth 92 (1988) 276.18.J. H. Wang, D. H. Kim and J. S. Huh, “Modeling of crystal growth process in heat exchanger method ”, Journal of Crystal Growth 174 (1997) 13.19.S. Brandon, D. Gazit and A. Horowitz “Interface shape and thermal fields during the gradient solidification method growth of sapphire single crystals”, Journal of Crystal Growth 169 (1996) 190.20.F. Schmid and C. P. Khattak, “Large crystal sapphire optics“, Laser Focus/Electro-Optics 19 (1983) 147.21.C. P. Khattak and F. Schmid, “Growth of large-diameter by HEMTM for optical and laser application“, SPIE Advance in Optical Materials 505 (1984) 4. 22.F. Schmid and C. P. Khattak, “Current status of sapphire technology for window and dome applications “, SPIE Window and Dome Technologies and Materials 1112 (1989) 25.23.C. P. Khattak and F. Schmid, “Growth of CdTe crystal by the heat exchanger method (HEMTM)”, SPIE Future Infrared Detector Materials 1106 (1989) 47.24.C. P. Khattak and F. Schmid, “Production of near-net-shaped sapphire domes using the heat exchanger method (HEMTM)”, SPIE Window and Dome Technologies and Materials III 1760(1992)41.25.F. Schmid, M. B. Smith and C. P. Khattak, “Current status of sapphire dome production ”, SPIE 2286(1994)2.26.C. P. Khattak, F. Schmid, “High-Efficiency solar cells using HEM silicon ”, Conference Record of 24th IEEE Photovoltaic Specialists Conference (1994) 1351 Vol.2.27.F. Schmid, C. P. Khattak and D. Mark Felt, “Producing large sapphire for optic applications”, Journal American Ceramic Society Bullet 73 (1994) 39.28.C. P. Khattak and F. Schmid, “Automation in HEM silicon ingot production ”, Conference Record of 25th IEEE Photovoltaic Specialists Conference (1996) 597.29.F. Schmid and D. C. Harris, “Effects of crystal orientation and temperature on the strength of sapphire ”, Journal of American Ceramic Society 81 (1998) 885.30.C. P. Khattak and F. Schmid, “Growth of the world’s largest sapphire crystal”, Journal of crystal growth 225 (2001) 572.31.J. C. Brice, The Growth of Crystals from Liquids, North Holland, Amsterdam, (1973).32.C. E. Chang and W. R. Wilcox, ”Control of interface shape in the vertical Bridgman-Stockbarger technique”, Journal of Crystal Growth 21 (1974) 135.33.C. Martinez-Tomas, V. Munoz, R. Triboulet, ”Heat transfer simulation in a vertical Bridgman CdTe growth configuration”, Journal of Crystal Growth 197 (1999) 435.34. C. L. Jones, P. Capper and J. J. Gosney, “Thermal modeling of Bridgman crystal growth”, Journal of Crystal Growth 56 (1982) 581.35.S. Kuppurao, S. Brandon, J. J. Derby, “Modelling the vertical Bridgman growth of cadmium zinc telluride, Part I. Quasi-steady analysis of heat transfer and convection”, Journal of Crystal Growth 155 (1995) 93.36.C. Martinez-Tomas, V. Munoz, ”CdTe crystal growth process by the Bridgman method:numerical simulation”, Journal of Crystal Growth 222 (2001) 435.37. H. Weimann, J. Amon, Th. Jung, G. Müller, “Numerical simulation of the growth of 2”diameter GaAs crystal by the vertical gradient freeze technique”, Journal of Crystal Growth 180 (1997) 560.38.J. A. Savage “Preparation and properties of hard crystalline materials for optical applications”, Journal of Crystal Growth 113 (1991) 698.39.D. C. Harris, Infrared Window and Dome Materials, SPIE (1992) 40.紀俊安,“HEM長晶系統之設計“,國立中央大學碩士論文(1999) 41.劉哲銘,“以熱交換器法生長氧化鋁單晶與晶體檢測“,國立中央大學碩士論文(2000).42.B. Cockayne, ”Development in melt-grown oxide crystals”, Journal of Crystal Growth 3 (1968) 60.43.S. Kuppurao, S. Brandon and J. Derby, “Modeling the Vertical Bridgman Growth of Cadmium Zinc Telluride”, Journal of Crystal Growth 155 (1995) 93.44.1998 FIDAP User’s Manual, V8.0.45.Martin H. 1977 “Heat and mass transfer between impinging gas jets and solid surfaces “, Advances in Heat transfer, 13, Academic Press, New York46.Ch. Korber, G. Rau. M. D. Cosman and E. G. Cravalho, “A novel application of the vertical gradient freeze method to the growth of high quality III-V crystal“, Journal of Crystal Growth 74 (1986) 491.47.R. S. Feigelson and R. K. Route, “Vertical Bridgman Growth CdGeAs2 With Control of Interface Shape and Orientation”, Journal of Crystal Growth 49 (1980) 261.48.M. Kurz, G. Müller, “Control of thermal conditions during crystal growth by inverse modeling”, Journal of Crystal Growth 208 (2000) 341.49.C. E. Huang, D. Elwell and R. S. Feigelson, ”Influence of thermal conductivity on interface shape during Bridgman growth”, Journal of Crystal Growth 64 (1983) 441.50.R. H. Bogaard, “Toward a Thermophysical Property Database: Consolidation and Updating of Material Property Data Files,” Proc. 24th International Thermal Conductivity Conf., P. Goal, ed., Technomic Publishers, Lancaster, PA (1998). 51.D. C. Harris, Material for Infrared Window and Dome – Propertiess and Performance, SPIE (1999).52.M. Z. Saghir, M. R. Islam, N. Maffei, D.H.H. Quon, “Three-dimensional modeling of BGO using float zone technique”, Journal of Crystal Growth 193 (1998) 623.53.C. J. Jing, N. Imaishi, T. Sato, Y. Miyazawa, “Three-dimensional numerical simulation of oxide melt flow in Czochralski configuration”, Journal of Crystal Growth 216 (2000) 372.54.A. Horowitz, S. Biderman, Y. Einav, G. Ben Amar and D. Gazit, “Improved control of sapphire crystal growth ”, Journal of Crystal Growth 167 (1996) 183.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔