跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭文堡
研究生(外文):Wen-Bao Zheng
論文名稱:金屬粉末射出成型二維毛細吸附脫脂及飽和度之研究
論文名稱(外文):The influence of the saturation in metal injection molding.
指導教授:洪勵吾
指導教授(外文):L. W. Hourng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:金屬粉末毛細飽和度
外文關鍵詞:powdersaturation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

金屬粉末射出成型結合了射出成型和傳統粉末冶金的優點,具有高精密度、高複雜性等優點。然而在整個製造的過程中,脫脂過程對於成品品質影響甚巨,不僅費時,更有可能造成製程的失敗。
因此本文嘗試利用數值的方法以及結合多孔性介質的理論,並且導入飽和度的概念,來模擬毛細吸附脫脂的過程,巨觀上的對二維毛細吸附脫脂進行探討,嘗試以數值模擬飽和度對整個毛細吸附脫脂機制之影響,並以數值模擬出整個脫脂過程壓力和飽和度的分佈,並且預測脫脂的時間,並將結果和沒有考慮飽和度的情形作一比較。


Metal injection molding (MIM) is a method in metallurgy that combines the benefits from both plastic molding and powder molding. Its advantages include high capacity and high accuracy. In the MIM production processes, debinding is the most important and time-consuming stage Failing in this key process always leads to the overall failure of the MIM production.
To analyze the global behavior of the two-dimensional wick debinding, we apply Darcy’s law and the finite difference technique combined with the body-fitted grid generation method. The influence of the saturation on the wick-debinding mechanism is included. The numerical method is used to simulate the probability of pressure field and predict the wick-debinding time is simulated. Results with/without the consideration of saturation are also compared.


英文摘要………………………………………………………………
摘要………………………………………………………………
目錄……………………………………………………………………
表目錄…………………………………………………………………
圖目錄…………………………………………………………………
符號說明………………………………………………………………
第一章、序論…………………………………………………………
1-1 前言……………………………………………………
1-2 MIM的製造流程………………………………………
1-3 粉末原料………………………………………………
1-4 黏結劑…………………………………………………
1-5 MIM問題研究…………………………………………
1-6 文獻回顧……………………………………………….
1-6-1 基本回顧…………………………………………….
1-6-2 毛細吸附脫脂的理論和實驗……………………….
1-7 研究目的……………………………………………….
第二章、理論模式 ……………………………………………………
2-1 基本假設………………………………………………
2-2 統御方程式的建立……………………………………
2-3 飽和度…………………………………………………
2-4滲透率………………………………………………….
2-5 孔隙率…………………………………………………
2-6毛細壓力……………………………………………….
2-7無因次參數…………………………………………….
第三章、數值方法……………………………………………………
3-1 數值技巧………………………………………………
3-2二維橢圓座標系統之轉換……………………………..
3-3 數值計算流程…………………………………………
第四章、結果與討論 …………………………………………………
4-1 數值模擬結果…………………………………………
4-2 無因次分析……………………………………………
4-3 粉末粒徑對脫脂時間的影響…………………………
第五章、結論 …………………………………………………………
第六章、參考文獻……………………………………………………


1.楊穆仁,“粉末射出成形技術的近況與展望“ ,粉末冶金會刊, ,vol. 22, no.2, pp. 83~87 (1997).2.陳文信, 金屬粉末射出成形技術, 機械工業雜誌, Vol. 154, pp. 148-158 (1996).3.R. M. German, “Wear Application Offer Further Growth for PIM’ ,Metal Powder Report, June,pp.24~28 (1999).4.B. Haworth and P. J. James, “Injection Moulding of Powders”, Metal Powder Report, pp. 146-149 (1986).5.R. M. German, K. F. Hens, “Key Issue in Powder Injection Molding”, Ceramic Bulletin, Vol. 70, No. 8, pp. 1294-1302 (1991).6.K. F. Hens, T. J. Roche, J. A. Grohowski, “Thermat Sets up for Precision PIM”, Metal Powder Report, pp. 24~28 (1996).7.Karl. F. Hens, “Thermat Expands Precision PIM Operation”, Metal Powder Report, pp. 18~22 (1998).8.A. D. Hanson and S. C. Perruzza, “Optimizing Component Designs for Metal Injection Molding”, Int. J. Powder Metall., Vol.36, No.3, pp. 37-42 (2000).9.B. K. Lograsso, A. Bose, B. J. Carpenter, C. I. Chung, K. F. Hens, D. Lee, S. T. Lin, C. X. Liu, R. M. German, R. M. Messler, P. F. Murley, B. O. Rhee, C. M. Sierra, and J. Warren, “Injection of Carbonyl Iron with Polyethylene Wax”, Int. J. Powder Metall., Vol. 25, No. 4, pp. 337-348 (1989).10.K. C. Hsu and G. M. Lo, “Effect of Binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks : Experimental Design”, Powder Metall., Vol. 39, No. 4, pp. 286-290 (1996).11.K. F. Hens, S. T. Lin, R. M. German and D. Lee, “The Effects of Binder on the Mechanical Properties of Carbonyl Iron Products”, JOM, pp. 17-21 (1989).12.Y. S. Zu, S. T. Lin, “Optimizing the Mechanical Properties of Injection Molded W-4.9%Ni-2.1%Fe in Debinding”, J. Mater. Process. Tech., Vol. 71, pp. 337-342 (1997).13.楊偉文, 楊開雲, 洪敏雄, 金屬射出成形用水溶性黏結劑之研究,粉末冶金會刊, 第24卷, 第1期, pp. 24-29 (1999).14.C. W. Finn, “Vacuum Binder Removal and Collection”, Int. J. Powder Metall., Vol. 27, No. 2, pp.127-132 (1991).15.R. M. German, “Theory of Thermal Debinding”, Int. J. Powder Metall., Vol. 23, No. 4, pp. 237-245 (1987).16.B. K. Lograsso, R. M. German, “Thermal Debinding of Injection Molded Powder Compacts”, pmi, Vol. 22, No. 1, pp. 17-22 (1990).17.B. R. Patterson and C. S. Aria, “Debinding Injection Molded Materials by Melt Wicking”, JOM, pp. 22-24 (1989).18.C. S. Aria, B.R. Petterson, “Influence of Process Variables on Debinding by Melt Wicking“, Modern Development in Powder Metallurgy, vol. 18, pp. 403-416 (1988).19.R. Vetter, M. J. Sanders, I. Majewska-Glabus, L. Z. Zhuang and J. Duszczyk, “Wick-Debinding in Powder Injection Molding”, Int. J. Powder Metall., Vol. 30, No. 1, pp. 115-124 (1994).20.R. Vetter, W. R. Horninge, P. J. Vervoort, I. Majewska-Glabus, L. Z. Zhuang, J. Duszczyk, “Squared Root Wick Debinding Model for Powder Injection Moulding”, Powder Metall., Vol. 37, No. 4, pp. 265-271 (1994).21.柳立明, 金屬射出成形中毛細吸附脫脂製程參數之最佳化分析, 中央大學機械工程研究所碩士論文 (1999).22.M. Dutilly, O. Ghouati, and J. C. Gelin, “Finite-Element Analysis of the Debinding and Desification Phenomena in the Process of Metal Injection Molding”, J. Mater. Process. Tech., Vol. 83, pp. 170-175 (1998).23.C.C. Chen, L. W. Hourng, “Numerical Simulation of Two Dimensional Wick Debinding in MIM” ,Powder Metallurgy, Vol. 42, No.4, pp.313~319 (1999).24.鄭育宗, 金屬射出成形二維毛細脫脂機制之數值模擬, 中央大學機械工程研究所碩士論文 (1999).25.吳瑋芳, 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係, 中央大學機械工程研究所碩士論文 (2000).26.陳釧鋒, 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制, 中央大學機械工程研究所碩士論文 (2000).27.陳志誠, 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗, 中央大學機械工程研究所博士論文 (2001).28.鄭嘉雄, 飽和度對金屬射出成形製程中毛細吸附脫脂之影響, 中央大學機械工程研究所碩士論文 (2001).29.J. Bear, Dynamics of fluids in porous media, Dover Pub., New York, (1972).30.Carlos A. Grattoni, Richard A. Dawe, ”Anisotropy in Pore Structure of Porous Media”, Powder Technology, Vol. 85, pp. 143-151 (1995).31.Y. Oyama, K. Yamaguchi, ”The Distribution of Liquid Content Equilibrium of Powder Bed” ,Rep. Inst. Phys. Chem. Res., Vol. 38, pp. 392-400 (1962).32.J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, “Numerical Grid Generation Foundations and Applications”, North-Holland Pub. , New York, (1985).33.黃進光, “三維橢圓座標之流場格點分析”, 國立中央大學機械研究所碩士論文(1987).34.Thomas P. D., and Middlecoff J. F., “Direct control of the grid point distribution in meshes generated by elliptic equation”, AIAA J., Vol.18, No.6, pp.652-656 (1980).35.J. F. Thompson, F. C. Thames and C. W. Mastin, “TOMCATA code for Numerical Generation of Boundary Fitted Curvilinear Coordinate System on Field Containing Any Number of Arbitrary 2-D Bodies”, Journal of Computational Physics, Vol. 24, pp. 274-302 (1977).36.M. Visbal and D. Knight, “Generation of Orthogonal and Nearly Orthogonal Coordinates with Grid Control Near Boundaries”, AIAA Journal, Vol. 20, No. 3, pp. 306-325 (1982).37.L. W. Hourng and C. K. Hwang, “Computational Among Grid Generation Using Elliptic Partial Differential Equations”, Journal of the Chinese Society of Mechanical Engineers, Vol. 10, No. 5, pp. 383-392 (1988).38.張智淵, “金屬粉末射出成型中胚體毛細吸附脫脂製程之數值模擬”, 機械工程研討會, (2001).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top