(3.239.33.139) 您好!臺灣時間:2021/03/02 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾秋峰
研究生(外文):Chiou-Feng Jueng
論文名稱:非線性振動系統之動態分析及系統判別
論文名稱(外文):The Dynamics Analysis of Nonlinear Vibration System and Modeling of a Rotating System
指導教授:張江南張江南引用關係
指導教授(外文):Jiang-Nan Jang
學位類別:博士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:94
中文關鍵詞:控制振動
外文關鍵詞:controlVibration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Cover
Abstract
Contents
List of Figures
List of Tables
Chapter 1. Introduction
Chapter 2. Formulation of the Problem and Theoretical Analysis
2-1 Equations of Motion
2-2 Methods of Dynamics Analysis
2-3 Stability Analysis
Chapter 3. The Dynamics Analysis
Chapter 4. Results of Stability and Bifurcation Analysis
4-1 Stability and Bifurcation Analysis
4-2 Analysis Result and Discussion
Chapter 5. Modeling of Rotating System
5-1 Algorithm of Identification
5-2 The Apparatus and The Experiment
5-3 Experiment with Oil Film Bearings and Identification Results
Chapter 6. Conclusion
References


References1.H. Frahm, “Device for Damping Vibration of Bodies”, U.S. Patent No. 989, 958, 1911.2.J. Ormondroyed and J. P. Den Hartog, “Theory of Dynamic Vibration Absorbers”, Trans. ASME, Vol. 50, PAPM-241, 1928.3.J. P. Den Hartog, “Mechanical Vibrations, 4th ed.”, McGraw-Hill, New York, 1956.4.R.E. Roberson, “Synthesis of a Nonlinear Dynamic Vibration Absorber”, Journal of the Franklin Institute, Vol. 254, pp. 205-220, 1952.5.H. J. Rice and J.R. Mc Craith. “Practical Nonlinear Vibration Absorber Design”, J. of Sound and Vib. Vol. 116(3), pp. 545-559, 1987.6.J. C. Nissen and K. Kopp, B. Schmalhorst, "Optimization of a Nonlinear Dynamic Vibration Absorber", J. of Sound and Vib., Vol. 99(1), pp. 149-154, 1985.7.P. Friendmann, C. E. Hammond and T. H. Woo, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, International Journal for Numerical Methods in Engineering, Vol. 11, pp.1117-1136, 1977.8.H. F. Baure, “Steady State Harmonic and Combination Response of a Non-linear Dynamic Vibration Absorber”, Trans. ASME J. Appl. Mech. 33, No. 1, pp. 213-216, 1996.9.A. F. Potekhin and Ye. I. Frenkel, “Vibrations in a system with a non-linear dynamic absorber with a clearance-elasticity characteristic”, Tr. Tambovskogo in-takhim. mashino-stroyeniya. No. 3, pp.149-155, 1969.10.N. Kloster and C. Knudsen, “Bifurcations near 1:2 subharmonic resonance in a structural dynamics model”, Chaos, Solitons and Fractals 5, pp. 55-66. 1995.11.W. Szemplińska-Stupnicka and J. Rudowski, “Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region”, Journal of Sound Vibration 152, pp. 57-72. 1992.12.H. G. Schuster, “Deterministic chaos – an introduction”, Physik-Verlag, Weinheim, pp. 126-130. 1984.13.K.B. Blair, C.M. Krousgrill and T.N. Farris, “Nonlinear Dynamic Response of Shallow Arches to Harmonic Forcing”, J. of Sound and Vib. 202, pp. 717, 1997.14.Z.-M. Ge, H.-S. Yang, H.-H. Chen and H.-K. Chen, “Regular and chaotic dynamics of a rotational machine with a centrifugal governor”, International Journal of Engineering Science 37, pp. 921-943. 1999.15.S. W. Shaw, “The dynamics of a harmonically excited system having rigid amplitude constraints, Journal Applied Mechanics”, Transactions of the ASME 52, pp. 453-458. 1985.16.A. Raghothama and S. Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp. 1087-1107. 2000.17.C. Holmes and P. J. Holmes, “Second order averaging and bifurcations to subharmonics in Duffing’s equation”, Journal Sound Vibration 78, pp. 161-174. 1981.18.K. Yagasaki, “Higher-order averaging and ultra-subharmonics in forced oscillators”, Journal of Sound Vibration 210, pp. 529-553. 1998.19.H. Kawakami, “Bifurcation of periodic responses in forced dynamic nonlinear circuits: computation of bifurcation values of the system parameters”, IEEE Transactions on Circuits and Systems CAS-31, pp. 248-260. 1984.20.H. Kawakami and T. Yoshinaga, “Codimension Two Bifurcation and its Computational Algorithm”, Bifurcation and Chaos, Theory and Applications Edited by J. Awrejcewicz Springer-Verlag, Berlin, pp. 97-132, 1995.21.A. H. Nayfeh and D. T. Mook, “Nonlinear Oscillations”, John Wiley & Sons, New York, 1979.22.C.S. Hsu, “Impulsive Parametric Excitation: Theory” J. Apply. Mech. 39, 551, 1972.23.J. Guckenheimer and P. Holmes, “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”, Springer-Verlag, New York, pp. 376-396. 1983.24.Y. A. Kuznetsov, “Elements of applied bifurcation theory”, Springer-Verlag, New York, 1995.25.V. J. Steffen and D. A. Rade, ”An Identification Method of Multi-degree-of-Freedom System Based on Fourier Series”, The International Journal of Analytical and Experimental Modal Analysis, Vol.6,No4, Oct., pp.271-278,1991.26.K. Yasda, S. Kawamura and K. Watanbe, “Identification of Nonlinear Multi-Degree-of Freedom Systems (Presentation of an Identification Technique”, JSME International Journal: Series III, Vol. 31, No.1, pp.8-14, 1988.27.H. T. Yau, C. K. Chen and C. L. Chen, “Chaos and Bifurcation-Analysis of a Flexible Rotor Supported by Short Journal Bearings with Nonlinear Suspension” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol 214, Iss 7, pp. 931-947, 2000.28.Y. C. Hsiao and P. C. Tung, “Coalescence of the primary responses and the secondary responses in a nonautonomous system”, Physics Letters A 291, pp. 237-248, 2001.29.C. Hayashi, “Nonlinear oscillations in physical systems”, Princeton University Press, Princeton, (Chapter 1), 1964.30.Y. T. Leung and S. K. Chui, “Non-linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method”. J. of Sound and Vib., 181(4), pp. 619-633, 1995.31.A. H. Nayfeh, “Perturbation Methods”, John Wiley & Sons, New York, 1973.32.P. Friedmann and C.E. Hammond, “Efficient Numerical Treatment of Periodic Systems with Application to Stability Problems”, Int. J. Numer. Method Eng. 11, pp. 1117, 1977.33.C. Padmanabhan, and R. Singh, “Analysis of periodically excited non-linear systems by a parametric continuation technique”, Journal of Sound Vibration 184, pp. 35-58. 1995.34.A. Raghothama and S.Narayanan, “Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method”, Ocean Engineering 27, pp.1087-1107, 2000.35.T. SÖderstrÖm, P. Stoica, “System Identification”, Prentice Hall, New York, 1989.36.K. Szabelski and J. Warminski, ”Parametric Self-Excited Non-linear System Vibrations Analysis with Inertial Excitation”, Int. J. Non-Linear Mechanics, Vol.30, No.2, pp. 179-189, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔