跳到主要內容

臺灣博碩士論文加值系統

(54.91.62.236) 您好!臺灣時間:2022/01/18 00:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭威良
研究生(外文):Wei-Liang Kuo
論文名稱:多段進流去氮除磷系統動態處理特性之研究
論文名稱(外文):The research of dynamic treatment characteristics of step-feeds system in removal nitrogen and phosphorus
指導教授:歐陽嶠暉歐陽嶠暉引用關係
指導教授(外文):Chaio-Fuei Ouyang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:163
中文關鍵詞:多段進流BNR程序去氮除磷動態處理
外文關鍵詞:step-feedsnitrogen and phosphrous removalBNR processdynamic treatment
相關次數:
  • 被引用被引用:10
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
活性污泥法及其相關之修正方法應用廣泛,但每日實際流入污水處理廠之污水量會隨時間、地區而有所變動,一般處理廠面對變動負荷常採用之應變策略包括於污水處理系統之進流端設置調勻池、考量安全因子設計及以長期累積的經驗做為修正操作與控制的依據等。然而這些策略均不具時效性或增加建設成本,因此BNR程序(Biological Nutrient Removal Process)面臨動態進流操作時,對於處理系統的處理效率與最佳化操控將是一個考驗。本研究使用TNCU-3(Taiwan National Central University-3)模廠進行研究。
穩態操作控制在SRT=10天、進流Q=240ml/min、COD=300mg/L、TN=40mg/L、TP=5mg/L以及HRT約9.5小時,各試程以分流比Q1:Q2:Q3=1:0:0:0、0.9:0.1:0、0:8:0.2:0、0.7:0.3:0、0.8:0.1:0.1、0.7:0.2:0.1迴流污泥比Qr=0.5Q共六組試程進行操作,其出流水SCOD均小於20mg/L,去除率達94%以上,出流水中皆檢測不到溶解性之正磷酸鹽及TP,SS約在6~14 mg/L之間,TN去除率約在69.2%∼76.4%,對於各營養鹽併同去除的效率均高於一般的BNR程序。
動態操作則控制在SRT=14.6天、進流Q=80~240ml/min、COD=100~300mg/L、TN=25~40mg/L、TP=3~5mg/L以及HRT約9.5~14小時,六種分流以兩種Qr:Q=0.5及0.25共12組試程操作,並輔以電腦監測水質項目,電腦監測結果為:厭氧段ORP=-50∼370 mV、厭氧段pH =6.3∼6.9、好氧第一槽DO=1.5∼4(mg/L)、出流水COD=4∼15(mg/L)、出流水NO3-=5∼14(mg/L)、出流水pH =7∼7.5、出流水SS=2∼10(mg/L)、迴流污泥RSS=2800∼6800(mg/L)。
另24小時之批次實驗結果發現各試程總F/M介於0.15∼0.18之間,平均MLSS約1,600∼2,000mg/L較穩態為低,受進流端厭氧段的F/M比影響較大,當厭氧段F/M較高時,整個模廠反應槽的平均MLSS有較高之趨勢。兩段分流之MLSS稀釋效應較明顯,約有200∼400 mg/L之稀釋現象。各試程出流水COD約在4∼12 mg/L之間,去除率均可達93%以上,與穩態操作類似。各試程出流水硝酸鹽濃度約5∼11mg/L,去除率約65∼84%。以缺氧槽及好氧槽為控制體積時,可發現缺氧槽的C/N越高,則好氧槽殘留的硝酸鹽越低。缺氧第一槽C/N控制在4∼8之間可使好氧第三槽殘餘NOx介於5∼8 mg/L之間,缺氧第二槽的C/N控制介於3∼5之間,好氧第四槽殘餘的NOx則僅剩下5∼7 mg/L。磷的去除效率明顯低於穩態操作,動態操作出流水的正磷酸鹽濃度介於0.03∼0.7 mg/L,去除率介於68.2∼98.7%,動態操作時所有試程中去氮除磷效果以試程0.7:0.2:0.1最好。
Activated Sludge Process and its modified methods had used very widely. The daily wastewater quality would vary with time or in different regions. Generally, the strategies treating the dynamic inflow in wastewater treatment plants were used to set up equilibrium basins, design by safe factors and long-term experiences as modified operations and control rules. However, these strategies were not efficient methods or increased the capital cost. Therefore, it is a test for the efficiencies and the optimal operations of BNR process(Biological Nutrient Removal Process) during the dynamic inflow. TNCU-3 process (Taiwan National Central University-3) is used in this research.
It is controlled that SRT was 10 days, inflow quantity Q was 240ml/min, COD was 300mg/L, TN was 40mg/L, TP was 5mg/L and HRT was 9.5 hours in steady state. The six runs were operated at Q1:Q2:Q3 was 1:0:0:0, 0.9:0.1:0, 0:8:0.2:0, 0.7:0.3:0, 0.8:0.1:0.1 and 0.7:0.2:0.1 and the return sludge rate Qr was 0.5Q. The effluent SCOD was less than 20mg/L and the removal efficiency more than 94%. The effluent phosphate and phosphorus weren’t detected. The suspended solid was about 6 to 14 mg/L. The removal efficiency of total nitrogen was about 69.2% to 76.4%. All of the nutrient removal efficiencies in TNCU-3 were higher than other BNR processes.
It is controlled that SRT was 14.6 days, inflow quantity Q was 80 to 240ml/min, COD was 100 to 300mg/L, TN was 25 to 40mg/L, TP was 3~5mg/L and HRT was about 9.5 to 14 hours in dynamic operations. 6 step-feed runs were separated to Qr:Q was 0.5 and 0.25. In summary 12 runs operated and monitored the treatment qualities by computer. The computer monitoring results as followings: ORP was -50 to 370 mV in anaerobic zone, pH was 6.3 to 6.9 anaerobic zone, DO was 1.5 to 4(mg/L)in aerobic-1 zone、effluent COD was 4 to 15(mg/L), effluent nitrate was 5 to 14(mg/L), effluent pH was 7 to 7.5 effluent SS was 2 to 10(mg/L) and the return suspended solids was 2800 to 6800(mg/L)。
In 24 hours batch experiments the total F/M of the process was 0.15 to 0.18. Average MLSS was about 1,600 to 2,000mg/L and less than steady-state. It was influenced by F/M in anaerobic zone. When the F/M was high in anaerobic zone the average MLSS would be high in whole process. MLSS was diluted 200 to 400 mg/L and was obviously in two step-feed. Effluent COD in each run was about 4 to 12 mg/L and its removal efficiency was higher than 93%. This result was similar to steady-state. Effluent nitrate was 5 to 11 mg/L and its removal efficiency was 65 to 84%. It was found when the C/N was high in anoxic zone then the remaining nitrate in aerobic zone would be low if the control volume was anoxic zone and aerobic zone. When the C/N was controlled between 4 to 8 in 1st anoxic zone the remaining nitrate would be between 5 to 8 mg/L in 3rd aerobic zone. When the C/N was controlled between 3 to 5 in first 2nd anoxic zone the remaining nitrate would be between 5 to 7 mg/L in 4th aerobic zone. The removal efficiency of phosphorus is obviously less than steady-state. Effluent phosphate was about 0.03 to 0.7 mg/L in dynamic operation and its removal efficiency is between 68.2 to 98.7%. The optimal efficiency of nutrient removal was run-0.7:0.2:0.1 in the research.
誌謝
摘要Ⅰ
英文摘要Ⅲ
目錄Ⅴ
圖目錄Ⅶ
表目錄Ⅹ
第一章 前言1
1.1 研究緣起1
1.2 研究目的與內容2
第二章 文獻回顧4
2.1 活性污泥法BNR程序之沿革與發展4
2.2 活性污泥法BNR程序之機制原理10
2.2.1 氮的代謝11
2.2.2 氮的硝化作用12
2.2.3 氮的脫硝作用13
2.2.4 磷的代謝14
2.3 動態操作監測項目與擾動因子17
2.3.1 BNR程序自動化監測項目17
2.3.2 BNR程序自動化控制項目18
2.4 活性污泥法BNR程序動態操作與監控發展25
第三章 實驗設備與方法29
3.1 實驗模廠設備29
3.2 實驗自動監控設備32
3.2.1 自動監測設備33
3.3 實驗基質39
3.4 實驗計畫41
3.4.1 實驗架構41
3.4.2 實驗試程43
3.5 實驗分析方法與設備44
3.5.1 分析方法44
3.5.2 分析設備45
第 四 章 實驗結果與討論46
4.1 穩態操作各試程水質特性46
4.2 動態操作各試程水質特性48
4.2.1 不分流操作 1:0:0系列(Run-1及Run-2)49
4.2.2 不分流動態操作處理特性59
4.3 兩段分流操作62
4.3.1 0.9:0.1:0系列(Run-3及Run-4)62
4.3.2 0.8:0.2:0系列(Run-5及Run-6)73
4.3.3 0.7:0.3:0系列(Run-7及Run-8)83
4.3.4 兩段分流動態操作處理特性95
4.4 三段分流操作96
4.4.1 0.8:0.1:0.1系列(Run-9及Run-10)96
4.4.2 0.7:0.2:0.1系列(Run-11及Run-12)107
4.4.3 三段分流動態操作處理特性117
4.5 電腦監測資料119
4.5.1 不分流操作電腦監測資料119
4.5.2 兩段分流操作電腦監測資料120
4.5.3 三段分流操作電腦監測資料122
4.6 綜合討論125
4.6.1 不同試程處理特性125
4.6.2 監控指標參數130
第五章 結論與建議132
5.1 結論132
5.2 建議133
參考文獻136
附錄141
附錄一 各試程好氧槽DO濃度變化142
附錄二 各試程反應槽平均COD濃度變化圖145
附錄三 各試程厭氧段氨氮濃度變化圖148
附錄四 各試程缺氧槽C/N變化圖150
附錄五 LAB VIEW圖控軟體介面154
附錄六 電腦監測資料155
附錄七 各反應槽平均MLSS變化圖161
Barros, Pericles R.; Carlsson, Bengt (1998) “Iterative design of a nitrate controller using an external carbon source in an activated sludge process” Water Science and Technology 37(12) 95-102 BeaubienM, A.; Hu, Y.; Bellahcen, D.; Urbain, V.; Chang, J.(1995) “Monitoring metabolic activity of denitrification processes using gas production measurements” Water Research 29(10), 2269-2274Brouwer, Harry; Bloemen, Michiel; Klapwijk, Bram; Spanjers, Henri (1998) “Feedforward control of nitrification by manipulating the aerobic volume in activated sludge plants” Water Science and Technology 38(3) 245-254Bundgaard, E.; Nielsen, M. K.; Henze, M. (1996) “Process development by full-scale on-line tests and documentation” Water Science and Technology 33(1) 281-287 Chang, W. C.; Ouyang, C. F.; Chiang, W. L.; Hou, C. W. (1998) ”Sludge pre-recycle control of dynamic enhanced biological phosphorus removal system: an application of on-line fuzzy controller” Water Research 32(3) 727-736 Ekama, George A.; Wentzel, Mark C. (1999) “Difficulties and developments in biological nutrient removal technology and modeling” Water Science and Technology 39(6) 1-11 Euiso, Choi; Daewhan, Rhu; Zuwhan, Yun; Euisin, Lee (1998) “Temperature effects on biological nutrient removal system with weak municipal wastewater” Water Science and Technology 37(9) 219-226 Fuerhacker, M.; Bauer, H.; Ellinger, R.; Sree, U.; Schmid, H.; Zibuschka, F.; Puxbaum, H. (2000) “Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors” Water Research 34(9) 2499-2506 H., S. Lee; Joseph, H. W. Lee (1995) “Continuous monitoring of short term dissolved oxygen and algal dynamics” Water Research 29(12). 2789-2796 Hallin, S.; Lindberg, C.-F.; Pell, M.; Plaza, E.; Carlsson, B. (1996) “Microbial adaptation, process performance and a suggested control strategy in a pre-denitrifying system with ethanol dosage” Water Science and Technology 34(1-2) 91-99 Hoen, K.; Schuhen, M.; Kohne, M. (1996) “Control of nitrogen removal in wastewater treatment plants with predenitrification, depending on the actual purification capacity” Water Science and Technology 33(1) 223-236 Gernaey, A.Krist; Petersen, Britta; Ottoy, Jean-Pierre; Vanrolleghem, Peter (2001) “Activated sludge monitoring with combined respirometric—titrimetric measurements” Water Research 35(5), 1280-1294 Gernaey, Krist; Bogaert, Herwig; Vanrolleghem, Peter; Massone, Alessandro; Rozzi, Alberto; et. al. (1998) “A titration technique for on-line nitrification monitoring in activated sludge” Water Science and Technology 37(12) 103-110 Gustaf Olsson, Bob Newell (1999) “Wasterwater Treatment Systems Modelling, Diagnosis and Control” IWA publishingIsaacs, S.; Mah, Terry; Maneshin, S. K. (1998) “Automatic monitoring of denitrification rates and capacities in activated sludge processes using fluorescence or redox potential” Water Science and Technology 37(12) 121-129 Islam, K. Ashraf; Newell, Bob; Lant, Paul (1999) “Advanced process control for biological nutrient removal” Water Science and Technology 39(6) 97-103 Jeppsson, Ulf; Diehl, Stefan (1996) “On the modelling of the dynamic propagation of biological components in the secondary clarifier” Water Science and Technology 34(5-6) 85-92 Kalker, T. J. J.; van Goor, C. P.; Roeleveld, P. J.; Ruland, M. F.; Babu?ka, R. (1999) “Fuzzy control of aeration in an activated sludge wastewater treatment plant: design, simulation and evaluation” Water Science and Technology 39(4) 71-78 Klapwijk, A.; Brouwer, H.; Vrolijk, E.; Kujawa, K. (1998) “Control of intermittently aerated nitrogen removal plants by detection endpoints of nitrification and denitrification using respirometry only” Water Research 32(5) 1700-1703 Lee, T. T.; Wang, F. Y.; Newell, R. B. (1999) “On the modelling and simulation of a BNR activated sludge process based on distributed parameter approach” Water Science and Technology 39(6) 79-88 Leeuw, E. J.; Kramer, J. F.; Bult, B. A.; Wijcherson, M. H. (1996) “Optimization of nutrient removal with on-line monitoring and dynamic simulation” Water Science and Technology 33(1) 203-209 Lindberg, C.-F.; Carlsson, B. (1996) “Estimation of the respiration rate and oxygen transfer function utilizing a slow DO sensor” Water Science and Technology 33(1) 325-333 Lindberg, Carl-Fredrik; Carlsson, Bengt (1996) “Nonlinear and set-point control of the dissolved oxygen concentration in an activated sludge process” Water Science and Technology 34(3-4) 135-142 Lindberg, Carl-Fredrik; Carlsson, Bengt (1996) “Adaptive control of external carbon flow rate in an activated sludge process” Water Science and Technology 34(3-4) 173-180 Lindberg, Carl-Fredrik (1998) “Multivariable modeling and control of an activated sludge process” Water Science and Technology 37(12) 149-156 Lukasse, L. J. S.; Keesman, K. J.; Klapwijk, A.; van Straten, G. (1998) “Optimal control of N-removal in ASPs” Water Science and Technology 38 (3) 255-262 Maharaj, I.; Elefsiniotis, P. (2001) “The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters” Bioresource Technology 76(3) 191-197 Mark, Ole; Hernebring, Claes; Magnusson, Peter (1998) “Optimisation and control of the inflow to a wastewater treatment plant using integrated modelling tools” Water Science and Technology 37(1) 347-354 Martin Côtê, Bernard P. A. Grandjean, Paul Lessard and Jules Thibault (1995) “Dynamic modeling of the activated sludge process : improving prediction using neural networks” Water Research 29(4) 995-1004,Maurer, M.; Gujer, W. (1995) “Monitoring of microbial phosphorus release in batch experiments using electric conductivity” Water Research 29(11), 2613-2617 Meredith, Doug; Maidment, Clive; Gibbs, Kim (1998) “Total ammonia monitoring using an optrode and an electrochemical sample pH adjusting system” Water Science and Technology 37(12) 301-307 Messenger, J. R.; Smith, J. C.; Tetreault, M. J.; Vitasovic, C.; Zhou, S.; Scott, P.; Kozicki, M (1999) “The use of dynamic BNR and two-dimensional clarifier modelling to investigate nitrogen removal at Eastern Treatment Plant, Melbourne, Australia” Water Science and Technology 39(6) 89-96 Michael Häck and Manfred Köhne (1996) “Estimation of wastewater process parameters using neural networks”, Water Science and Technology 33(1) 101-115Mohamed F. Hamoda, Ibrahim A. Al-Ghusain and Ahmed H. Hassan (1999) “Integrated wastewater treatment plant performance evaluation using artificial neural networks” Water Science and Technology Tech. 40(7) 55-65Movva Reddy (1998) “Biological and Chemical Systems for Nutrient Removal” Water Environment FederationOhtsuki, T.; Kawazoe, T.; Masui, T. (1998) “Intelligent control system based on blackboard concept for wastewater treatment processes” Water Science and Technology 37(12) 77-85 Onnerth, T. B.; Nielsen, M. K.; Stamer, C (1996) “Advanced computer control based on real and software sensors” Water Science and Technology 33(1) 237-245 Petruck, Andreas; Cassar, Andreas; Dettmar, Joachim (1998) “Advanced real time control of a combined sewer system” Water Science and Technology 37(1) 319-326 Pitman, A. R. (1999) “Management of biological nutrient removal plant sludges ─ Change the paradigms?” Water Research 33(5) 1141-1146 Plisson-Saune, S.; Capdeville, B.; Mauret, M.; Deguin, A.; Baptiste, P. (1996) “Real-time control of nitrogen removal using three ORP bending-points: signification, control strategy and results” Water Science and Technology 33(1) 275-280 Pochana, Klangduen; Keller, Jurg (1999) “Study of factors affecting simultaneous nitrification and denitrification (SND)” Water Science and Technology 39(6) 61-68 Solley, David; Barr, Keith (1999) “Optimise what you have first! Low cost upgrading of plants for improved nutrient removal” Water Science and Technology 39(6) 127-134 Steffens, M.A.; Lant, P.A (1999) “Multivariable control of nutrient-removing activated sludge systems” Water Research 33(12) 2864-2878 Stevens, Gerald M.; Barnard, James L.; Rabinowitz, Barry (1999) “Optimizing Biological Nutrient Removal in anoxic zones” Water Science and Technology 39(6) 113-118 Surmacz-Gorska, Joanna; Gernaey, Krist; Demuynck, Carl; Vanrolleghem, Peter; Verstraete, Willy (1996) “Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements” Water Research 30(5) 1228-1236 Tonkovic, Zlatko (1998) “Aerobic stabilisation criteria for BNR biosolids” Water Science and Technology 38(2) 133-141 Vanukuru, Balasubramanyam; Flora, Joseph R. V.; Petrou, Michael F.; Aelion, C. Marjorie (1998) “Control of pH during denitrification using an encapsulated phosphate buffer” Water Research 32(9) 2735-2745 Wilcox, S. J. (1995) “A neural network, based on bicarbonate monitoring, to control anaerobic digestion” Water Research, 29(6) 1465-1470 Yagi, S.; Shiba, S. (1999) “Application of genetic algorithms and fuzzy control to a combined sewer pumping station” Water Science and Technology 39(9) 217-224 Yu, R.-F.; Liaw, S.-L.; Chang, C.-N.; Lu, H.-J.; Cheng, W.-Y. (1997) “Monitoring and control using on-line ORP on the continuous-flow activated sludge batch reactor system” Water Science and Technology 35(1) 57-66 Zhao, H.; IsaacsM, S. H.; Soeberg, H.; KummelM, M. (1995) “An analysis of nitrogen removal and control strategies in an alternating activated sludge process” Water Research 29(2) 535-544 歐陽嶠暉,(2000)下水道工程學,長青出版社周裕然、郭威良、黃浩梁、歐陽嶠暉, ”厭氧及多段好氧-缺氧去氮除磷程序處理營養鹽污水之特性”, 國立中央大學環境工程學刊 第七期, 民國九十年蔡勇斌、吳明洋、歐陽嶠暉、蔣偉寧,”動態活性污泥程序即時操作控制之研究”,中國土木水利工程學刊 第八卷 第二期, 民國八十五年龔偉隆,”污水AO處理程序操作策略比較之研究”,國立中央大學碩士論文,民國八十五年侯清文,”生物營養鹽去除系統自動監控之研究”,國立中央大學碩士論文,民國八十四年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top