跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.49) 您好!臺灣時間:2023/02/09 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳關佑
研究生(外文):Kuan-Yu Wu
論文名稱:線管式與填充床式電漿反應器破壞SF6之初步研究
論文名稱(外文):Removal of SF6 from Gas Streams via Dielectric Barrier Discharge and Combined Plasma Catalysis Technologies
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo Been Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:106
中文關鍵詞:全氟化物六氟化硫溫室效應電漿破壞
外文關鍵詞:dielectric barrier discharge (DBD)perfluorinat
相關次數:
  • 被引用被引用:22
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全氟化物(PFCs, Perfluorinated Compounds)為全球溫暖化潛勢極高之氣體,且存活於大氣中之時間達千年以上,因此造成地球溫暖化問題逐漸受到重視;而為有效控制日益嚴重之全球溫暖化現象,於1997年12月日本京都所召開的溫室效應氣體管制會議中,便將包括PFCs及CO2、CH4、HPFCs、N2O等氣體列為管制項目。PFCs的排放控制方式除了提高製程中之利用率外,尚可採用替代化學物、回收再利用和破壞削減等方法;而相較於替代化學物開發的不易、回收再利用的高成本,破壞削減是現階段控制PFCs之主要方法。本研究嘗試以實驗室規模之介電質放電系統,針對PFCs中之SF6進行低溫電漿處理,並藉由反應氣體組成、供電電壓、供電頻率及氧氣含量等重要參數進行控制,探討線管式與填充床式放電系統對SF6轉化率和產物生成之影響。實驗結果顯示,於添加氧氣之線管式反應器系統中,SF6之轉化率隨供電電壓及供電頻率上升而增加;當氣流中之氧含量增加時,SF6之轉化率隨之上升,然而過量的氧氣將不利於SF6之轉化。當供給電壓為20kV、供電頻率為150Hz、壓力為1atm、操作溫度為293K、氣體組成為[SF6]/[O2]/[Ar]/[N2] = 300 ppmv:12 %:40 %:N2 balance時,所獲得之SF6轉化率為91 %。當反應器結合觸媒填充床時,供給電壓為20kV、供電頻率為150Hz、壓力為1atm、操作溫度為293K、氣體組成為[SF6]/[O2]/[Ar]/[N2] = 300 ppmv:20 %:40 %:N2 balance時,所獲得之SF6轉化率為73 %。就產物之分析而言,於線管式與填充床式反應器皆選擇氣體組成較單純的情況作分析。SF6轉化反應之主要生成的產物以SO2、SO2F2及SOF4為主。系統耗能部份,線管式與填充床式反應器系統所需之操作能量隨供電電壓、供電頻率增加而升高;而填充床式反應器將有效降低系統操作所需之能量。本研究已證實介電質放電系統結合觸媒填充床轉化SF6之技術確實可行,深具發展潛力。
Perfluorinated compounds (PFCs) have great potentials in causing global warming and they may exist in the atmosphere for thousands of years. Therefore, emission of PFCs and its associated global warming attract more and more public attention. To effectively alleviate the increasingly deteriorated phenomenon, the Kyoto Environmental Regulatory Council in 1997 reached a consensus to abate CO2, CH4, PFCs, HPFCs, N2O emissions. In addition to increase the efficiency of utilizing PFCs, the semiconductor industry applied alternative chemicals, recovery/recycle systems and abatement techniques. Owing to difficult development in alternative chemicals and high cost in recovery/recycle systems, the abatement techniques turns to be the primary way to control PFCs emission at present stage. This study investigates the feasibility of applying dielectric barrier discharge (DBD) technology for destroying and removing PFCs from gas streams. The target PFCs selected for this study is SF6, which is commonly used in semiconductor industry as etching carrier or in power industry as insulator. A bench-scale experimental apparatus has been designed and constructed in this study for evaluating the effectiveness of DBD for SF6 removal. Dependencies of removal efficiency achieved with DBDs on operating parameters including applied voltage, composition of the gas stream, applied frequency and oxygen concentration, and power consumption are also investigated. Experimental results indicate that operating the system at higher oxygen gases and applied voltage can enhance the removal efficiency of SF6 achieved with DBD. However, high concentrations of O2 in the gas stream may actually decrease the removal efficiency due to their electronegative properties. More than 91% removal efficiencies have been achieved with this apparatus for SF6 when 20 kV is applied for the gas stream containing [SF6]/[O2]/[Ar]/[N2] = 300 ppmv: 12%: 40%: N2 balance at 293 K, 1atm. In addition, 73% removal efficiencies for SF6 have been achieved with this apparatus combined with catalysts for the gas stream containing [SF6]/[O2]/[Ar]/[N2] = 300 ppmv: 20%: 40%: N2 balance at 293 K, 1atm. The energy yield of SF6 achieved with plasma combined catalysis(CPC) were significantly higher than this apparatus without packed catalysts. With the application of DBD, SF6 molecules can be dissociated and oxidized to other smaller molecules (i.e. SO2, SO2F2 and SOF4). This preliminary study demonstrates the feasibility of applying a novel technology for destroying and removing PFCs from gas streams. Further research should be carried out to identify and quantify the final by-products for better understanding of the removal mechanisms.
第一章 前言1
第二章 文獻回顧4
2.1 全氟化物4
2.1.1 全氟化物之基本特性4
2.1.2 全氟化物之應用6
2.1.3 全氟化物之管制9
2.2 PFCS去除方法10
2.3 電漿原理21
2.4 SF6氣體24
2.4.1 SF6氣體的基本特性24
2.4.2 SF6氣體在工業之上應用25
2.5 電漿系統中SF6之反應機制28
2.6 介電質放電法 (DBD, DIELECTRIC BARRIER DISCHARGE)36
第三章 實驗方法及設備39
3.1 實驗設備41
3.1.1 氣體供應系統41
3.1.2 操作參數控制系統42
3.1.3 介電質放電系統43
3.2 實驗方法46
第四章 結果與討論52
4.1 線管式DBD轉化SF652
4.1.1 Ar濃度對於SF6去除效率的影響52
4.1.2 氧氣含量對SF6去除效率的影響55
4.1.3 供電頻率對SF6去除效率的影響57
4.2 填充床式反應器(CPC)轉化SF664
4.2.1 氧氣濃度對於SF6去除效率的影響66
4.2.2 頻率對於SF6去除效率的影響67
4.2.3 添加C2H4對於SF6去除效率的影響69
4.3 產物分析71
4.4 觸媒表面分析86
4.5 系統耗能探討90
4.5.1 線管式反應器90
4.5.2 填充床式反應器92
4.5.3 反應器耗能與系統耗能之比較93
4.5.4 能量效率評估95
第五章 結論與建議98
5.1 結論98
5.2 建議99
參考文獻102
Anderson H. M., Merson J.A., and Light R. W., "A Kinetic Model for Plasma Etching in a SF6/O2 RF Discharge," IEEE Trans. Plasma Sci., vol. PS-14, 156-164,1986Belhaouari J. B., Gonzales J. S., and Gleizes A., "Simulation of a Decaying SF6 Arc Plasma: Hydrodynamics and Kinetics Coupling Study," J. Phys. D, vol. 31, pp. 1219-1231, 1998Breitbarth, F. W., Berg, D., Dumke, K., Tiller, H. -J. “Investigation of the Low-pressure Plasma-chemical Conversion of Fluorocarbon Waste Gases”, Plasma Chem. Plasma Porcess, 17, 39-57, 1997Chang M. B. and Yu S. J., “An Atmospheric-Pressure Plasma Process for C2F6 Removal”, Environmental Science & Technology, 35, 1587, 2001Chapman B., “Glow Discharge Processes”, A Wiley-Interscience Publication, Canada, 297, 1980David Y.E., “Capture and Recycle: A New Option for Emission Reductionof Sulfur Hexafluoride in Magnesium Melting,” (paper presented at International Symposium on Recycling of Waste Materials, September, 1999).Derdourl A., Casanovas J., Grob R., and Mathien J., “Spark Decomposition of SF6/H2O Mixtures,” IEEE. Trans. Electr. Insul. Vol. 24, No. 6, pp.1147-1157, 1989Donaldson, D.J.; Sloan, J.J., “Energy Distributions in the HF and CO Products of the Reaction of F Atoms with HCO,” J. Chem. Phys. 82, 1873, 1985Dorai R., “Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons”, Thesis for the Degree of Master of Science in Chemical Engineering, University of Illinois at Urbana-Champaign, 2000Edelson D. and Flamm D. L., "Computer Simulation of a CF4 plasma Etching Silicon," J. Appl. Phys., vol, 56, pp. 1522-1531, 1984Fiala A., Kiehlbauch M., Mahnovski S., and Graves D. B., “Model of Point-of-Use Plasma Abatement of Perfluorinated Compounds with an Inductively Coupled Plasma”, Journal of Applied Physics, 86, 152, 1999.Flippo B. G. and Jones R. F., “Abatement of Fluorine Emissions Utilizing an ATMI CDO Model 863 with Steam Injection”, Journal of the Semiconductor Safety Association, 1, 2001Fujimi M., Suwa G. and Nagano K., “PFC Emissions Reductions in the Semiconductor Operations Division at Seiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001Hartz C. L., Bevaan J. W., Jackson M. W., and Wofford B. A., “Innovative Surface Wave Plasmas Reactor Technique for PFC Abatement”, Environmental Science & Technology, 32, 682, 1998Herron J. T. and Van Brunt R. J., "Zonal Model for Corona Discharge-Induced Oxidation of SF6 in SF6/O2/H2O Gas Mixtures", Proc. 9th Int. Symp. On Plasma Chemistry, University of Bari, Italy, 1989.Hitachi S. T. and Hitachi S. k., “Catalytic Decomposition of PFC”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998Hung M. C., Yang C. L., Wu P. H., Pan S. M. and Huang Y. S., “Reduction of NF3 Usage for Optimal AMAT HDP Clean Recipe”, ISESH 8th Annual Conference, Kenting, Taiwan, 2001Ibuka S., Japan’s Use of ClF3, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998IS, “Long-Term Evaluation of the Litmas ‘Blue’ Plasma Device for Point-of-Use (POU) Perfluorocompound and Hydrofluorocarbon Abatement,” International SEMATECH Technology Transfer # 99123865B-ENG., 2000Karecki S. M., Pruette L. C., and Reif R., “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas, 1998Levy R. A., Zaitsev V. B., Aryusook K., Ravindranath C., Sigal V., Misra A., Kesari S., Rufin D., Sees J., and Hall L., “Investigation of CF3I as an Environmental Benign Dielectric Etchant”, Journal of Materials Research, 13 (9), 2643, 1998Liao M. Y., Wong K., McVittie J. P., and Saraswat K. C., “Abatement of Perfluorocarbons with an Inductively Coupled Plasma Reactor,” Journal of Vacuum Science & Technology, B17 (6), 2638, 1999Marinelli L., Worth W., “Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry”, Technology Transfer # 93112074A-TR SEMATECH, 1994Novak J. P. and Frechette M. F., "Transport Coefficients of SF6 and SF6-N2 Mixturs from Revised Data, "J. Appl. Phys., vol. 55, pp.107-119, 1984Occupational Safety and Health Administration (OSHA). January 19, 2000 .http://www.oshaslc.gov/dts/chemicalsampling/toc/tocchemsamp.htmlPolak L. and Lebedev Y. A., Plasma Chemistry. Cambridge, UK:Cambridge International Science. Principles of Plasma Discharges and Materials Processing, M. A. Lieberman and A. J. Lichtenberg, Eds. New York: Wiley, 1994Pruette L. C., Karecki S. M., and Reif R., “Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vaccum Science & Technology, A16 (3), 1577, 1998Qwentes, (2002/3/15), Fluorcarbons and Sulfur Hexafluoride http://www.fluorocarbons.org/applications/others/metalcasting/main apply/main.htmRaizer Y. P., Allen J. E. and Kisin V. I., “Gas Discharge Physics”, ISBN: 3-540-19462-2 Springer-Verlag Berlin Heidelberg Present, Texas, 1991Sum S.P., “Evaluation of C3F8 as a Cleaning Gas in a Novellus Concept Two Sequel Tool, SEMATECH TT Document #97053282A-TR, May 31, 1997Seeley A., Chandler P., Cottle S., and Mawle P., “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK, 1997Shih M., Lee W.-J., Chen C.Y. and Tsai C.H. (2001) “Decomposition of SF6 in the O2/Ar Plasma Environment,” The 2001 Conference on Aerosol Science and Technology, Yu-Lin County, Taiwan.USEPA, (2000) GLOBAL Warming Site: National Emissions-HFCs, SF6.PFCs.http://www.epa.gov/globalwarming/emissions/national/xfcs-sf6.htmlUSEPA, (2002) Byproducts of Sulfur Hexafluoride (SF6) Use in the Electric Power Industy, http://www.epa.gov/high gwpl/sf6/index.htmlVan Brunt R. J. and Herron J. T., “Plasma Chemical Model for Decomposition of SF6 in a Negative Glow Corona Discharge”, Physica Scripta, vol.T53, pp.9-29, 1994Wallington, T. J.; Hurley, M. D.; Shi, J.; Maricq , M. M.; Sehested, J.; Nielsen, O. J.; Ellermann, T., “A Kinetic Study of the Reaction of Fluorine Atoms with CH3F, CH3Cl, CH3Br, CF2H2, CO, CF3H, CF3CHCl2, CF3CH2F, CHF2CHF2, CF2ClCH3, CHF2CH3, and CF3CF2H at 295K,” Int. J. Chem. Kinet. 25, 651-665, 1993Worth W. F., “Reducing PFC Emissions: A Tech. Update”, Future Fab International, Environmental/ Health and Safety, 57, 2000Xu X., Rauf S., and Kushner M. J., “Plasma Abatement of Perfluorocompounds in Inductively Coupled Plasma Reactors”, Journal of Vaccum Science & Technology A: Vaccum, Surfaces and Films, 18 (1), 213, 2000Yu S. J. and Chang M. B., “Oxidative Conversion of PFC via Processing with Dielectric Barrier Discharges”, Plasma Chemistry and Plasma Processing, 21 (3), 311, 2001鄭昆山,能源政策與產業結構之法制調整,國科會/環保署NSC88-EPA-Z-029-001,民國88年。周崇光,“積體電路製程尾氣控制技術之應用與發展”,2000產業環保工程實務技術研討會,民國89年11月。余榮彬,“半導體工業全氟化物排放控制技術與機會”,TSIA專題報導摘選,民國88年4月。下載http://www.tsia.org.tw/cnewletter9.htm.舒碧霞 (2000),“廢氣減量半導體業壓力大”。下載於:http://news.pchome.com.tw/ttimes/science/20000802/index-20000802113003513841.html 張君正 (1998),“半導體製造廠排放地球溫暖化氣體狀況”,一九九八工業減廢暨永續發展研討會論文集。游生任 (2000),「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,民國89年6月。呂榮峰 (2001),「BaTiO3填充床電漿反應器破壞CF4之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,民國90年6月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top