跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/23 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖軒斐
研究生(外文):Shiuan-Fei Liau
論文名稱:零價鐵反應牆外加電壓去除水中三氯乙烯之研究
論文名稱(外文):Dechlorination of Trichloroethene in Aqueous Solution by Zero-Valent Iron Reactive Barrier with Appling Voltage
指導教授:曾迪華曾迪華引用關係
指導教授(外文):Dyi-Hwa Tseng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:130
中文關鍵詞:零價鐵反應牆電壓三氯乙烯還原脫氯電解
外文關鍵詞:electrolyzeTCEvoltagereductive dechlorinationzero-valent iron reactive barrier
相關次數:
  • 被引用被引用:8
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用管柱模擬零價鐵反應牆,探討外加電壓提升鐵反應牆去除TCE之成效,藉由電極種類、電極位置、電壓大小及進流流速等不同操作條件,討論零價鐵反應牆外加電壓去除水中TCE之反應機制,最後評估零價鐵反應牆外加電壓長時間操作之可行性。
實驗結果顯示,本研究所建構之鐵反應牆對TCE的去除效果約為32%,此去除率與相關文獻相較並不高,推測是因所使用之鐵純度不高,且有鐵氧化物覆蓋,而降低鐵可參與反應之表面積。插入電極於完全填充石英砂管柱中並施加電壓,直接電解TCE溶液的實驗結果發現,TCE在管柱中有累積的現象,但並無消減的情形,因此藉由電解的方法並無法有效去除TCE。當在鐵反應牆中外加電壓時,使用石墨、銅、鋅等不同陰電極,對於TCE的去除率並無明顯差異。管柱中電極不同擺設位置下,對TCE去除效果有很大的差異,實驗結果顯示,將陽極置於鐵反應牆中,陽極後端的鐵砂因受電解水產生之H+的酸洗作用,及外加電壓所形成之電位差的情況下,加速陽極附近鐵電子釋放能力,進而增加TCE的還原速率,因此,若將陽極置於鐵反應牆前端時,將可增加陽極對鐵反應牆的影響範圍,而提升TCE的去除率。另外,隨著施加的電壓坡降愈高,TCE的去除率愈高,當施加電壓坡昇高至1V/cm時,管柱出流端TCE去除率可由32%提升至76%,而在2V/cm之操作時,TCE去除率可達100%,但實驗過程中發現在2V/cm之操作時,鐵反應牆中容易生成沉澱物,阻塞鐵反應牆的孔隙,因此不利長期操作。當進流流速由7.5cm/day上升至16.6cm/day時,雖然減少TCE與鐵反應牆的接觸時間,但TCE的去除率並未降低,推測是因鐵反應牆外加電壓時,促進鐵表面活性,因此,在本研究所控制之接觸時間,對TCE去除率影響不大。
長時間連續操作下發現,零價鐵反應牆中外加電壓對TCE的去除率會隨通電時間而增加,通電第七天時,管柱出流端TCE可達100%的去除率,隨後20天的操作時間內,一直維持良好的去除效果,因此零價鐵反應牆外加電壓若在適當的操作下,具有良好且穩定的TCE處理能力。
The column experiments were carried out in this study to simulate the operation of zero-valent iron reactive barriers and to investigate the TCE removal efficiency enhanced by applying voltage. The types of electrode, location of electrode, amount of voltage, and inlet velocity were studies to understand the mechanism of iron reactive barriers applied voltage to remove TCE. Finally, the feasibility of long—term operation was also investigated in this study.
Experimental results indicated that 32% of TCE removal efficiency was achieved in the iron reactive barrier. Compare the performance to others system mentioned in the literatures, the TCE removal efficiency was relative low because of the impurity and precipitates on the surface of iron. Consequently, the reactivity of iron surface would be declined. In addition, TCE was accumulated in the column that filled with sand when applying voltage directly and the amount of TCE was not reduced in the system. The TCE removal efficiency was not apparent difference when using graphite, copper and zinc as cathode, respectively. The TCE removal efficiency was different when the electrode located in different ports of column. Meanwhile, results revealed that the removal efficiency of TCE was increased simultaneously when anode located in iron reactive barrier. The two major reasons to explain this phenomenon: (1) H+ resulted from electrolyzing water occurred near the anode could acid wash the iron to enhance the reactivity of iron surface; (2) When the voltage applied, the potential difference would accelerate the electrons of iron to release and induce TCE reduction. Furthermore, as the potential gradient increased, the TCE removal efficiency was increased in the meantime. When potential gradient increased to 1V/cm,TCE removal efficiency in the outlet of column could arise from 32% to 76%. When potential gradient was set in 2V/cm, TCE removal efficiency could reach to 100%. However, results shown the precipitates could cover the iron surface and block the pore of reactive barrier. Therefore, potential gradient of 2V/cm was not suitable for long-term operation. The column inlet velocity increased from 7.5 to 16.6 cm/day would decrease the contact time, but TCE removal efficiency was not decreased in this study. Suppose iron reactive barrier applied voltage could increase iron activity, the contact time would not affect TCE removal efficiency, significantly.
According to the long-term operational analysis, the TCE removal efficiency would increase comply with the time of the voltage applied. At the 7 days operation periods, TCE removal efficiency in the outlet was attained 100%, and in the later 20 days periods, TCE removal could still maintain high efficiency. Thus, zero-valent iron reactive barriers applied voltage demonstrated great potential in the long-term operation when operating in suitable conditions.
Keywords : zero-valent iron reactive barrier, voltage, TCE, reductive dechlorination, electrolyze
目 錄
目錄Ⅰ
圖目錄Ⅳ
表目錄Ⅶ
第一章 前言 …………………………………………………………1
1-1研究緣起 ……………………………………………………1
1-2研究目的及內容……………………………………………...2
第二章理論基礎與文獻回顧………………….…………….4
2-1三氯乙烯之物化特性及其對人體的危害…………………...4
2-2三氯乙烯之污染現況……………………….……………….7
2-3零價鐵反應牆去除三氯乙烯之研究現況..…………………9
2-3-1基本原理………………………………………………9
2-3-2零價鐵反應牆去除TCE之影響因子……………….11
2-3-3零價鐵去除TCE之反應途徑………………………..14
2-3-4零價鐵反應牆去除三氯乙烯現地應用現況…………16
2-4電解電化學方法分解水中有機物之研究….………..………20
2-4-1電化學基本理論………………………………………20
2-4-2電化學方法分解含氯有機物之研究…………………23
2-5鐵反應牆外加電源去除水中含氯有機物之研究…………..28
第三章 實驗設計、材料與方法…………………………………….29
3-1研究流程…………………………………….……………….29
3-2實驗裝置……………………………………………………..30
3-3實驗設計及操作方法……………………………………….34
3-4實驗設備……………………………………….…………….43
3-5實驗材料及藥品……….…………….………………….……45
3-6分析方法……………………………………………………..47
第四章 結果與討論……………….………………………………….49
4-1背景實驗……………………………………………………...49
4-2零價鐵反應牆對TCE的去除效果…………………………51
4-2-1 TCE的去除效果……………………………………..51
4-2-2 pH及鐵離子的變化………………………………….53
4-3外加電壓對TCE的去除效果………………………………56
4-3-1外加電壓對pH值的影響…………………………….56
4-3-2外加電壓時電流的變化………………………………59
4-3-3 TCE濃度的變化……………………………………..60
4-4零價鐵反應牆外加電壓去除TCE之初步探討……………64
4-5零價鐵反應牆外加電壓去除水中TCE之影響因子探討….69
4-5-1電極種類的影響………………………………………69
4-5-2電極位置的影響………………………………………72
4-5-3電壓大小的影響………………………………………95
4-5-4流速的影響……………………………………………101
4-6長時間操作評析……………………………………………..104
4-6-1 TCE去除效果………………………………………..104
4-6-2綜合評析………………………………………………108
第五章 結論與建議…………………………………………………...110
5-1結論…………………………………………………………..110
5-2建議…………………………………………………………..111
參考文獻 ……………………………………………………………..107
附錄……………………………………………………………………附-1
參考文獻1.Bendient, P. B., H. S. Rifai, and C. J. Newell, “Ground Water Contamination, Nonaqueous Phase Liquids,” 2nd, Prentice Hall PTR publisher(1999).2.Blowes, D.W., C. J. Ptacek, and J. L. Jambor, ”In-Situ Remediation of Chromate Contaminated Groundwater Using Permeable Reactive Walls,” Environ. Sci. Technol. , Vol.31, No.12, pp.3348—3357(1997).3.Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System,” Environ. Sci. Technol., Vol.29, No.11, pp.2850-2855 (1995).4.Campbell, T. J., D. R. Burris, A. L. Roberts, and J. R. Wells, “Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System,” Environ. Sci. Technol., Vol.16, No.4, pp.625-630 (1997).5.Corapcioglu, Y. C., S. E. Roosevelt, and S. Chowdhury, “Micromodel Visualization and Quantification of Transport Processes and Dissolution in Porous Media”, 1997 International Conference on Groundwater Quality Protection, Taipei, pp.24-44(1997).6.Criddle C. S. and P. L. McCarty, “Electrolytic Model System for Reductive Dehalogenationn in Aqueous Environments,” Environ. Sci. Technol., Vol.25, No.5, pp.973-978(1991)7.Crow, D. R., “Principles and Applicatons of Electrochemistry, ” Blackie Academic & Professional, pp.9-12, Glasgow(1994).8.Farrell J., N. Melitas, M. Kason, and T. Li, “Electrochemical and Column Investigation of Iron-Mediated Reductive Dechlorination of Trichloroethylene and Perchlotoethylene,” Environ. Sci. Technol., Vol.34, No.12, pp.2549-2556(2000).9.Fountain, J. C. and D. Ph., “Technology Evaluation Report :Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Office of Ground-Water-Remediation Technology Analysis Center, TE-98-02(1998).10.Gavaskar A. R., N. Gupta., B. M. Sass., R. J. Janosy., and D. O’Sullivan, “Permeable Barriers for Groundwater Remediation,” Battelle Press, Columbus, Ohio, pp.8 (1998).11.Gillham, R. W. and S. F. O’Hannesin, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron,” Ground Water, Vol.32, No.6, pp958-967(1994).12.Gotpagar, J., E. Grulke, T. Tsang, and D. Bhattacharyya, “Reducitve Dehalogenation of Trichloroethylene Using Zero-Valent Iron,” Environmental Progress, Vol. 16, No. 2, pp. 137-143 (1997).13.Hardy, L. I. and R. W. Gillham, “Formation of Hydrocarbon from the Reduction of Aqueous CO2 by Zero-Valent Iron”, Environ. Sci. Technol., Vol.30, No. 1, pp. 57-65 (1996).14.Holtzclaw, H. F., J. W. R. Robinson, and J. D. Odom, “General Chemistry with Qualitative Analysis,” D. C. Health and Company, ninth edition, Toronto ,ppAI0-AI1 (1991).15.Johnson, T. L., M. M. Scherer, and P. G. Tratnyek, “Kinetics of Halogenated Organic Compound Degradation by Iron Metal,” Environ. Sci. Technol., Vol. 30, No. 8, pp. 2634-2640 (1996).16.Kulikov, S. M., V. P. Plekhanov, A. I. Tsyganok, C. Schlimm, and E. Heitz, “Electrochemical reductive dechlorination of chlororganic compounds on carbon cloth and metal-modified carbon chloth cathodes,” Electrochemica Acta, Vol. 14, pp. 527-531 (1996).17.Li, T., and J. Farrell, “Reductive Dechlorination of Trichloroethylene and Carbon Tetrachloride Using Iron and Palladized Iron Cathodes,” Environ. Sci. Technol., Vol.34, No.1, pp173-179. (2000).18.Li T. and J. Farrell, “Electrochemical investigation of the Rate-Limiting Mechanisms for Trichloroethylene and Carbon Tetrachloride Tetrachloride Reductive at Iron surfaces,” Environ. Sci. Technol., Vol.35, No.17, pp3560-3565. (2001).19.Lovelace, K. A., “Evaluation the Technical Impracticability of Groundwater Cleanup,” 1997 International Conference on Groundwater Quality Protection, Taipei, pp. 165-179 (1997).20.Matheson, L. J., and P. G. Tratnydk, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environ. Sci. Technol., Vol.28, No.12, pp2045-2053 (1994).21.Meyers, R. A., Environmental Analysis and Remediation, Volume 8, Wiley Encyclopedia Series in Environmental Science, New York, pp.4729-4761(1998).22.Odziemkowski, M. S., T. T. Schuhmacher, R. W. Gillham, and E. J. Reardon, “Mechanism of Oxide Film Formation on Iron in Simulating Groundwater Solutions: Raman Spectroscopic Studies,” Corrosion Science, Vol.40, No.2/3, pp. 371-389 (1998).23.O’Hannesin, S. F., and R. W. Gillham, “Long-Term Performance of An in-situ Iron Wall for Remediation of Vocs,” Ground Water, Vol.36, No.1, pp164-170 (1998).24.Orth, S. W. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environ. Sci. Technol., Vol. 30, No. 1, pp. 66-71 (1996).25.Paal Z., and P. G. Menon, “Hydrogen Effects in Catalysis: Fundamentals and Practical Applications,” M. Dekker, New York ,pp21-25 (1988).26.Puls, R. W., D. W. Blowes, and R. W. Gillham, “Long-Term Performance Monitoring for a Permeable Reactive Barrier at the Us-Coast-Guard-Support-Center, Elizabeth-City, North-Carolina,” Journal of Hazardous Materials, Vol.68, No.1-2, pp.109-124 (1999).27.Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals,” Environ. Sci. Technol., Vol. 30, No. 8, pp. 2654-2659 (1996).31.Roh. Y, S. Y. Lee, M. P. Elless and H.-S. Moon, “Electro-enhanced Remediation of Trichloroethene-contaminated Groundwater Using Zero —valent Iron,” J. Environ. Sci. Health., Vol.A35, No.7, pp1061-1076. (2000) 29.Scherer M. M., S. Richter, R. L. Valentine, and P. J. J. Alvarez, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean up,” Critical Reviews in Environmental Science and Technology, Vol.30, No.3, pp.363~411(2000).30.Schreier C. G. and M. Reinhard, “Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, Vol.31, No.6, pp.3475~3487(1995).31.Siantar, D. P., C. G. Schreier, C. Chou, and M. Reinhard, “Treatment of 1,2-Bibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Wat. Res., Vol.30, No.10, pp. 2315-2322(1996).32.Su, C., and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zero valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products, ” Environ. Sci. Technol., Vol. 33, No. 1, pp. 163-168 (1999).33.U.S. EPA, “Field Application of in Situ Remediation Technologies: Permeable Reaction Barriers,” Office of Solid Waste and Emergency Response, EPA-542-R-99-002(1999).34.U.S.EPA, “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers,” Office of Solid Waste and Emergency Response, Technology Innovation Office (2002).35.Vogel, T. M., C. S. Criddle, and P. L. Mccarty, “Transformation of Halogenated Aliphatic Compounds,” Environ. Sci. Technol. , Vol.21, No.8, pp.722~736. (1987)36.田福助,「電化學-理論與應用」,高立圖書有限公司,第8-12頁,台北(1987)。37.行政院勞工委員會,「物質安全資料表範例」 (1997)。38.行政院環境保署,http://ww2.epa.gov.tw/toxic/prog/database.asp(2001).39.行政院環境保署,“毒理資料庫”, http://ww2.epa.gov.tw/toxic /prog/database.asp(2002a).40.行政院環境保署,“加油站與儲槽地下水污染調查”, http://ww2.epa.gov.tw/enews/ (2002b)41.林正欣,「利用金屬鋅對氯酚電化學還原性脫氯之研究」,博士論文,台灣大學環境工程研究所,台北(1990)。42.林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。43.官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第710-718頁,台中(1998a)。44.官知嫻、李季眉、盧至人,「甲苯分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,第727-733頁,台中(1998b)45.鮮祺振編譯,格里弟編著,「電極動力學」,徐氏基金會出版,第4-8頁,台北(1996)。46.黃忠良編譯,魚崎浩平、喜多英明著,「基本電化學」,復漢出版社,第10-12頁,台南(1983)。47.陳家洵、董天行,「三氯乙烯污染地下水之整治標準研究-期末報告」,國立中央大學應用地質研究所,中壢(1998)。48.蔡文田、邱伸彥,「蒸汽脫脂用含氯溶劑之特性、管制和污染防治」,工業污染防治,第41期,第145∼160頁(1992)。49.蔡政勳,「零價鐵反應牆處理三氯乙烯污染物之反應行為研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。50.蔡璨樺,「零價鐵技術袪除三氯乙烯之研究」,碩士論文,中央大學環境工程研究所,中壢(2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊