跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜堃鴻
研究生(外文):Kun-Hung Tu
論文名稱:陣列波導光柵波長多工器設計與分析
論文名稱(外文):non
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:49
中文關鍵詞:波長多工陣列波導光柵
外文關鍵詞:non
相關次數:
  • 被引用被引用:2
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2

隨著光纖通信技術的日益成熟,大量資訊傳輸的光纖通信系統成為目前世界各國爭相研究及發展的論題,為達到此目的,高密度波長多工網路儼然已蔚為未來光通信傳輸系統的必然趨勢,在高密度波長多工網路系統中,高密度波長多工器為最具關鍵性的元件,而擁有易於擴大波道數、封裝成本低、適合大批量產以及可積體化等優點的陣列波導光柵(AWG)波長多工器,為未來達到多波道與窄頻道寬度需求最具發展潛力的元件。
在本論文中以氮氧化矽作為波導結構,並詳細介紹AWG元件的設計原理,且使用光波導數值模擬軟體BeamPROP來輔助完成設計的工作。在元件的設計上,完成了1×4通道AWG元件的分析模擬,並使用在平面波導區域加入折射率漸變區來達到平坦化分佈的輸出頻譜響應。


第一章前言1
第二章陣列波導光柵元件設計理論5
2−1 基本工作原理5
2−1−1 色散關係與頻道間距8
2−1−2 自由頻譜範圍10
2−2 理論分析12
2−3 幾何結構18
第三章陣列波導光柵元件設計模擬21
3−1 光束傳播法21
3−2 基本波導結構與元件設計24
3−3 輸出頻譜特性改良31
第四章結論36
參考資料37


[1]M. K. Smit and C. van Dam, “PHASR-Based WDM-Devices :principles, design and applications,” IEEE J. Select. Topics Quantum Electron., vol. 2, pp. 236—250, June 1996.[2]P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski and A. Paunescu, “Large N×N waveguide grating routers,” J. Lightwave Technol., vol. 18, pp. 985—991, July 2000.[3]M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385—386, Mar. 1988.[4]A. R. Vellekoop and M. K. Smit, “Low-loss planar optical polarization splitter with small dimensions,” Electron. Lett., vol. 25, pp. 946—947, July 1989.[5]A. R. Vellekoop and M. K. Smit, “Four-channel integrated- optic wavelength Demultiplexer with weak polarization dependence,” J. Lightwave Technol., vol. 9, pp. 310—314, Mar. 1991.[6]M. K. Smit, “Optical phased arrays,” in Integrated Optics in Silicon-Based Aluminum Oxide, Ph.D. thesis, Delft Univ. of Technol., 1991.[7]H. Takahashi, S. Suzuki, K. Kato and I. Nishi, “Arrayed- waveguide grating for wavelength division multi/Demulti- plexer with nanometer resolution,” Electron. Lett., vol. 26, pp. 87—88, Jan. 1990.[8]H. Takahashi, Y. Hibino and I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett., vol. 17, pp. 499—501, Apr. 1992.[9]C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812—815, Sept. 1991.[10]C. Dragone, C. A. Edwards and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett., vol. 3, pp. 896—899, Oct. 1991.[11]M. Zirngibl, C. Dragone and C. H. Joyner, “Demonstration of a 15×15arrayed waveguide multiplexer on InP,” IEEE Photon. Technol. Lett., vol. 4, pp. 1250—1253, Nov. 1992.[12]M. R. Amersfoort, C. R. de Boer, B. H. Verbeek, P. Demeester, A. Looyen and J. J. G. M. van der Tol, “Low-loss phased-array based 4-channel wavelength demultiplexer integrated with photodetectors,” IEEE Photon. Technol. Lett., vol. 6, pp. 62—64, Jan. 1994.[13]C. H. Joyner, M. Zirngibl and J. C. Centanni, “An 8-channel digitally tunable transmitter with electroabsorption modulated output by selective-area epitaxy,” IEEE Photon. Technol. Lett., vol. 7, pp. 1013—1015, Sept. 1995.[14]C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, P. Demeester and H. J. Frankena, “Compact integrated InP-based add-drop multiplexer,” in Proc. 22nd Eur. Conf. Optical Communication(ECOC’96), Oslo, Sweden, Sept. 15—19, 1996, pp. 5.67—5.70.[15]Y. Hida, Y. Innoue and S. Imamura, “ Polymeric arrayed- waveguide grating multiplexer operating around 1.3 mm,” Electron. Lett., vol. 30, pp. 959—960, June 1994.[16]L. H. Spiekman, M. B. J. Diemeer, T. H. Hoekstra and M. K. Smit, “First polymeric phased array wavelength demultiplexer operating at 1550 nm,” Integrated Photonics Research 1996, Boston, MA, Apr. 29—May 2, 1996, pp.36—39.[17]H. Okayama and M. Kawahara, “Waveguide array grating demultiplexer on LiNbO3,” Integrated Photonics Research 1995, Dana Point, CA, pp. 296—298, Feb. 23—25, 1995.[18]H. Okayama, M. Kawahara and T. Kamijon, “Reflective waveguide array demultiplexer in LiNbO3,” J. Lightwave Technol., vol. 14, pp. 985—990, June 1996.[19]H. Takahashi, K. Oda, H. Toba and Y. Inoue, “Transmission characteristics of arrayed waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, pp.447—455, Mar. 1995.[20]R. März, Integrated Optics:Design and Modeling, Norwood, MA:Artech House, 1994.[21]C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis:A Signal Processing Approach, New York:Wiley, 1999.[22]J. W. Goodman, Introduction to Fourier Optics, San Francisco:McGraw-Hill, 1996.[23]BeamPORP Version 5.0, Rsoft, Inc., 2001.[24]R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 150—162, Jan./Feb. 2000.[25]G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron., vol. 28, pp. 363—370, Jan. 1992.[26]W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron., vol. 29, pp.2639—2649, Oct. 1993.[27]Y. Hida, Y. Hibino, H. Okazaki and Y. Ohmori, “10-m-long silica- based waveguide with a loss of 1.7 dB/m,” Integrated Photonics Research 1995, Dana Point, CA, 1995.[28]Y. Hibino, H. Okazaki, Y. Hida and Y. Ohmori, “Propagation loss characteristics of long silica-based optical waveguides on 5-inch Si wafers,” Electron. Lett., vol. 29, pp.1847—1848, Oct. 1993.[29]S. Suzuki, K. Shuto, H. Takahashi and Y. Hibino, “Large-scale and high density planar lightwave circuits with high-D GeO2- doped silica waveguides,” Electron. Lett., vol. 28, pp. 1863—1864, Sept. 1992.[30]K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders and Th. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sensors and Actuators, vol. 74, pp. 9—12, 1999.[31]H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, New York:McGraw-Hill, 1985.[32]K. Okamoto and A. Sugita, “Flat spectral response arrayed- waveguide multiplexer with parabolic waveguide horns,” Electron. Lett., vol. 32, pp. 1661—1662, Aug. 1996.[33]M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, “Passband broadening of integrated arrayed waveguide filters using multimode interference couplers,” Electron. Lett., vol. 32, pp. 449—451, Feb. 1996.[34]C. Dragone, T. Strasser, G. A. Bogert, L. W. Stulz and P. Chou, “Waveguide grating router with maximally flat passband produced by spatial filtering,” Electron. Lett., vol. 33, pp. 1312—1314, July 1997.[35]T. Kamalakis and T. Sphicopoulos, “An efficient technique for design of an arrayed-waveguide grating with flat spectral response,” J. Lightwave Technol., vol. 19, pp.1716—1725, Nov. 2001.[36]K. Okamoto and H. Yamada, “Arrayed-waveguide grating multiplexer with flat spectral response,” Opt. Lett., vol. 20, pp.43—45, Jan. 1995.[37]D. Wiesmann, J. Hübner, R. Germann, I. Massarek, H. W. M. Salemink, G. L. Bona, M. Kristensen and H. Jäckel, “Large UV-induced negative index changes in germanium-free nitrogen-doped planar SiO2 waveguides,” Electron. Lett., vol. 34, pp.364—366, Feb. 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top