跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬先禮
研究生(外文):Hsien-Li Ma
論文名稱:雙向混合DWDM系統架構在80-kmLEAF上傳送CATV和OC-48信號
論文名稱(外文):A Bidirectional Hybrid DWDM System for CATV and OC-48 Trunking
指導教授:呂海涵呂海涵引用關係李清庭
指導教授(外文):Hai-Han LuChing-Ting Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:大有效截面積光纖載波三次合成拍差比載波二次合成拍差比載波雜訊比高密度分波多工器次載波多工調幅殘波帶調變
外文關鍵詞:AM-VSBSCMLEAFCTBCSOCNRDWDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

本論文中,主要研究方向在於利用雙向傳輸及高密度分波多工 (DWDM) 技術,所架構而成的外調式光纖有線電視 (CATV) 長距離傳輸系統,不僅系統傳輸容量倍增,而且測得相當優異的電視系統性能參數。首先,將此系統架構的傳輸媒介用標準單模光纖 (SMF)、TWF及大有效截面積光纖 (LEAF) 相互作比較,當光信號經80公里大有效截面積光纖傳送後,於信號接收端由解多工器分出並測得良好的系統參數特性:載波雜訊比(CNR≧50 dB)、載波二次合成拍差比(CSO≧68 dB)和載波三次合成拍差比(CTB≧64 dB)。
接著我們研究利用四個不同波長的高密度分波多工系統,架構在 4公里多模光纖 (MMF) 上傳送256-QAM數位信號。首先利用多頻道信號產生器,產生252個未經調變的射頻信號源,透過這4公里多模光纖的高密度分波多工系統搭配次載波技術傳送256-QAM數位信號,此系統其傳輸容量可達到10 Gbit/s。若將其應用在Gigabit Ethernet 中,因其具有高速資料傳遞的優點,所以在網路快速需求發展的環境裡,想必會非常引人注目。
再則進一步以四個不同波長建構雙向混合高密度分波多工系統,用來作為有線電視和OC-48信號的傳輸中繼,其中兩個波長傳送有線電視類比信號,另外兩個波長則用來傳送數位基頻信號。不僅系統傳輸容量倍增,而且在經由 80公里大有效截面積光纖傳送後,結果可知傳送數位信號並未造成任何通信品質的劣化,且在接收端測得相當優異的系統參數特性:載波雜訊比≧50 dB、載波二次合成拍差比≧65 dB、載波三次合成拍差比≧63 dB和很低的數位信號誤碼率。
最後,利用雙向光纖有線電視網路系統的架構 : 下行頻段:50 ~ 750 MHz、上行頻段:5 ~ 42 MHz。若利用此有線電視分佈網路作為網際網路(Internet) 的接取,則由實驗結果可顯示出,上行雜訊的累積與時間相關,這是網路系統設計者不可控制的因素。然而可更進一步研究得知,並不是所有上行頻率 (5 ~ 42 MHz) 均可用作雙向通訊服務,僅在 25 MHz頻段以上是比較適合用在雙向服務。


論 文 摘 要.......................................................I
目 錄...........................................................IV
圖 表 索 引.......................................................VI
第一章 前 言..................................................1
第二章 有線電視雙向傳輸系統.....................................9
2-1 導論.................................................9
2-2 實驗架構.............................................10
2-3 實驗結果及討論.......................................13
2-4 結論.................................................18
第三章 高密度分波多工系統搭配次載波多工技術架構在4公里多模光纖上傳送256-QAM信
號.......................................................19
3-1 導論.................................................19
3-2 實驗架構.............................................20
3-3 實驗結果和討論.......................................22
3-4 結論.................................................24
第四章 雙向混合高密度分波多工系統架構在80公里大有效截面積光纖上傳送CATV和
OC-48信號...............................................25
4-1 導論.................................................25
4-2 實驗架構.............................................27
4-3 實驗結果及討論.......................................29
4-4 結論.................................................32
第五章 以光纖有線電視網路同時傳送有線電視與網際網路信號.........34
5-1 導論.................................................34
5-2 上行入侵雜訊的分析...................................35
5-3 實驗架構.............................................37
5-4 實驗結果及討論.......................................38
5-5 結論.................................................40
第六章 結 論...................................................42
參 考 文 獻.......................................................66
著 作...........................................................73


第一章[1.1] Yoshimura, H.; Sato, K.-I.; Takachio, N ” Future photonic transport networks based on WDM technologies”;IEEE Communication Magazine 2 (1999) 37,74-81.[1.2] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, N. J. Frigo: “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals” ; IEEE Photon. Technol. Lett. 3 (1991) 5, 481-483.[1.3] H. Dai, S. Ovadia, and C. Lin,”Hybrid AM-VSB/M-QAM multichannel video transmission over 120 km of standard single-mode fiber with cascade erbium-doped fiber amplifiers”; IEEE Photon. Technol. Lett. 8 (1996) 12, 1713-1715.[1.4] S. Ovadia, and C. Lin,”Performance characteristics and application of hybrid multichannel AM/M-QAM video lightwave transmission systems”; J. Lightwave Technol. 16 (1998), 1171-1186.[1.5] J. H Su, C. C Lee,W. Y. Guo,F. Y. Tsai, C. S. Wang, Y. K. Tu, and Y. K. Chen,”Composite-second-order improvement of 15 dB in an optically amplified 110-km AM-VSB CATV transport system using chirped fiber grating”; in Tech Dig OFC’99, San Diego, CA 1999, paper TuP2.[1.6] J. Haugen, J. Freeman, and J. Conradi,”Bidirectional transmission at 622 Mb/s utilizing erbium-doped fiber amplifiers”; IEEE Photon. Technol. Lett. PTL-4 (1992) 8, 913-916.[1.7] K. Kannan and S. Frisken, “Unrepeatered bidirectional transmission system over a single fiber using optical fiber amplifiers”; IEEE Photon. Technol. Lett. 5 (1993) 1, 76-79.[1.8] Y. K. Chen, W. Y. Guo, S. Chi, and W. I. Way,”Demonstration of in- service supervisory repeaterless bidirectional WDM transmission system”; IEEE Photon. Technol. Lett. 7 (1995) 9, 1084-1086.[1.9] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.[1.10] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421. [1.11] H. H. Lu, H. L. Ma, and C. T. Lee,”A bi-directional hybrid DWDM system for CATV and OC-48 trunking”; IEEE Photon. Technol. Lett. 13 (2001) 8, 902-904.[1.12] H. H. Lu, C. S. Lee, H. L. Ma, and C. T. Lee,”Up-Stream noise for the Internet access over fiber optical CATV”; Accepted, J. Opt. Commun. (2002) 6. 第二章[2.1] K. I. Suzuki, H. Masuda, S. Kawai, K. Aida, J. Conradi: “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250 km using 76 nm (1531-1607nm) gain-band bidirectional erbium-doped fiber amplifiers”; Electron. Lett. 33 (1997) 23, 1967-1968.[2.2] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421.[2.3] “The large effective area advantage: for multi-window applications”; Corning Corporation Tech. Report (2000).[2.4] H. H. Lu, H. L. Ma, and C. T. Lee,”A bi-directional hybrid DWDM system for CATV and OC-48 trunking”; IEEE Photon. Technol. Lett. 13 (2001) 8, 902-904.[2.5] W. I. Way: “Broadband hybrid fiber/coax access system technologies”; Academic Press 5 (1998) 4, 154-155.[2.6] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, N. J. Frigo: “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals”; IEEE Photon. Technol. Lett. 3 (1991) 5, 481-483.[2.7] K. P. Ho, S. K. Liaw: “Demultiplexer crosstalk rejection requirements for hybrid WDM system with analog and digital channels”; IEEE Photon. Technol. Lett. 10 (1998) 5, 737-739. 第三章[3.1] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.[3.2] S. Ovadia, H. Dai, C. Lin, and W. T. Anderson, “Performance of hybrid multichannel AM/256-QAM video lightwave transmission systems,” IEEE Photon. Technol. Lett. 7 (1995) 11, 1351-1353.[3.3] M. C. Wu, J. K. Wong, K. T. Tsai, Y. L. Chen, and W. I. Way, “740-km transmission of 78-channel 64-QAM signals (2.34 Gb/s) without dispersion compensation using a recirculating loop,” IEEE Photon. Technol. Lett. 12 (2000) 9, 1255-1257.[3.4] G. C. Papen, and G. M. Murphy, “Modal noise in multimode fibers under restricted launch conditions,” J. Lightwave Technol. 17 (1999) 5, 817-822.[3.5] T. E. Darcie, G. E. Bodeep, and A. A. M. Saleh, “Fiber-reflection-induced impairments in lightwave AM-VSB CATV systems,” J. Lightwave Technol. 9 (1991) 8, 991-995.[3.6] M. R. Philips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals,” IEEE Photon Technol Lett. 3 (1991) 5, 481-483.[3.7] T. K. Woodward, S. Hunsche, A. J. Ritger, and J. B. Stark, “1-Gb/s BPSK transmission at 850 nm over 1 km of 62.5-μm-core multimode fiber using a single 2.5-GHz subcarrier,” IEEE Photon Technol Lett. 11 (1999) 3, 382-384. 第四章 [4.1]W. Muys, J. C. van der Plaats, F. W. Willems, and P. H. van Heijningen, “Mutual deterioration of WDM-coupled AM-CATV and digital B-ISDN services in single fiber access networks,” IEEE Photon. Technol. Lett. 5 (1993) 7, 832-834.[4.2]K. P. Ho, H. Dai, C. Lin, S. K. Liaw, H. Gysel, and M. Ramachandran, “Hybrid wavelength-division-multiplexing systems for high-capacity digital and analog video trunking applications,” IEEE Photon. Technol. Lett. 10 (1998) 2, 297-299.[4.3]C. C. Lee and S. Chi, “Repeaterless transmission of 80-channel AM-SCM signals over 100-km large-effective-area dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 12 (2000) 3, 341-343.[4.4]C. H. Chang and Y. K. Chen, “Demonstration of repeaterless bi-directional transmission of multiple AM-VSB CATV signals over conventional single-mode fiber,” IEEE Photon. Technol. Lett. 12 (2000) 6, 734-736.[4.5]C. H. Kim, and Y. C. Chung, “2.5 Gb/s ´ 16-channel bidirectional WDM transmission system using bidirectional erbium-doped fiber amplifier based on spectrally interleaved synchronized etalon filters,” IEEE Photon. Technol. Lett. 11 (1999) 6, 745-747.[4.6]K. I. Suzuki, H. Masuda, S. Kawai, K. Aida, and J. Conradi, “Bidirectional 10-channel 2.5 Gbit/s WDM transmission over 250 km using 76 nm (1531-1607 nm) gain-band bidirectional erbium-doped fiber amplifiers,” Electron. Lett. 33 (1997) , 1967-1968.[4.7] “The large effective area advantage: for multi-window applications,” Corning Corporation Tech. Report, 2000.[4.8] H. H. Lu, H. L. Ma, and C. T. Lee,”Bidirectional transport of AM-VSB CATV system”; J. Opt. Commun. 23 (2002) 1, 22-25.[4.9] H. H. Lu, H. L. Ma, C. S. Lee and C. T. Lee,”A DWDM system for 256-QAM transmission over 4 km multimode fiber”; Microwave and Optical Technology Lett. 33 (2002) 6, 419-421.[4.10] M. R. Phillips and D. M. Ott, “Crosstalk caused by nonideal output filters in WDM lightwave systems,” IEEE Photon. Technol. Lett. 12 (2000) 8, 1094-1096.[4.11] M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems,” J. Lightwave Technol. 17 (1999) , 1782-1792.第五章[5.1] M. N. O. Sadiku, and C. Aduba: “Cable modem technology”; IEEE Potentials 19 (2000) 4, 26-27.[5.2] R. P. C. Wolters: “Characteristics of upstream channel noise in CATV-networks”; IEEE Trans. on Broadcasting 42 (1996) 4, 328-332. [5.3] C. A. Eldering, N. Himayat, and F. M. Gardner: “CATV return path characterisation for reliable communications”; IEEE Commun. Mag. 33 (1995) 8, 62-69. [5.4] A. H. H. Tan: “SUPER PON-A Fiber to the Home Cable Network for CATV and POTS/ISDN/VOD as Economical as a Coaxial Cable Network”; J. of Lightwave Technol. 15 (1997) 2, 213-218. [5.5] X. Lu, G. E. Bodeep, and T. E. Darcie: “Broad-band AM-VSB/64QAM cable TV system over hybrid fiber/coax network”; IEEE Photon. Technol. Lett. 7 (1995) 3, 330-332. [5.6] S. Ovadia, H. Dai, C. Lin, and W. T. Anderson: “Performance of hybrid multichannel AM/256-QAM video lightwave transmission systems”; IEEE Photon. Technol. Lett. 7 (1995) 11, 1351-1353.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top