# 臺灣博碩士論文加值系統

(35.153.100.128) 您好！臺灣時間：2022/01/19 03:07

:::

### 詳目顯示

:

• 被引用:1
• 點閱:188
• 評分:
• 下載:0
• 書目收藏:0
 封面AbstractContentsTable CaptionsFigure CaptionsGlossary of Notation1. Introduction1.1 The history of wavelet transform1.2 The studied motivation and studied purpose1.3 The applications of wavelet transform1.3.1 Analysis of Seidel aberration of optical system1.3.2 Image fusion1.3.3 Micro-range measurementsReferences2. Theory2.1 The window Fourier Transform2.2 Wavelet Transform2.3 Discrete Wavelet Transform2.4 Multiresolution analysis2.5 Two-dimensional wavelet decomposition algorithmReferences3. Analysis of Seidel aberration by use of discrete wavelet transform3.1 Seidel aberration coefficients computed with the Zernike polynomials3.2 Seidel aberration coefficients computed by the discrete wavelet Transform3.3 Computer simulation3.4 ConclusionReferences4. Analysis of Wave-Aberration by Use of the Wavelet Transform4.1 Computed aberration coefficients by the least-squares method4.2 Computed aberration coefficients by the wavelet transform4.3 Computer simulation4.4 ConclusionReferences5. The new image fusion method applied in two wavelengths detection of Biochip spot5.1 Correct the aberration by software5.2 Image fusion5.3 Experiment5.4 Result5.5 ConclusionReferences6. Analysis of CCD Moir's Pattern to Micro-range Measurements Using the Wavelet Transform6.1 Background6.2 Moir pattern and image processing6.3 Experiment result and discussion6.4 ConclusionReferences7. Summary and future workAppendicesA. Matlab Code for Analysis of Wave-Aberration by CWTB. Matlab Code for image fusion
 [1.1]. I. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys. 27, 1271-1283 (1986).[1.2]. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure and Appl. Math. 41, 909-996 (1988).[1.3]. S. Mallat, “A theory for multiresolution signal decomposition, dissertation,” Univ. of Pennsylvania, Depts. Of Elect. Eng. and Comput. Sci. 1988.[1.4]. S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell. 11, 674-693 (1989). [1.5]. O. Lee, A. P. Wade and G. A. Dumont, Anal. Chem. 66, 4507 (1994).[1.6]. C.K. Chen, Introduction to Wavelets (Academic Press, Boston), 1991.[1.7]. C. R. Mittermayer, S. G. Nikolov, H. Hutter, and M. Grasserbauer, “Wavelet denoiseing of Gaussian peaks: a comparative study,” Chemom. Intell. Lab. Syst. 34, 187-202 (1996).[1.8]. B. Walczak, B. van den Bogaert, and D. L. Massart, “Application of wavelet packet transform in pattern recognition of near-IR data,” Anal. Chem. 68, 1742-1747 (1996).[1.9]. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika 81, 425-455 (1994).[1.10]. D. L. Donoho, “Denoising by soft-thresholding,” IEEE Trans. Information Theory 41 (3), 463-479 (1995).[1.11]. S. Mallat “Atheory of multiresolution signal decomposition: the wavelet transform.” IEEE Trans, PSMI-11(7): 674-693 (1989).[1.12]. I.Daubechies, “The wavelet transform, time-frequency localization and signal analysis.” IEEE Trans. IT-36: 961-1005 (1990).[1.13]. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1975), Section 9.2.[1.14]. F. Zernike, “Beugungstheorie des Schnidenver-Eahrens und Seiner. Verbesserten Form, der Phasenkontrastmethode,” Physica 1,689 (1934).[1.15]. J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510-1518 (1980).[1.16]. D. Malacara, J. M. Carpio-Valadez and J. J.S`anchez-Mondrag`on, “ Wave- front fitting with discrete orthogonal polynomials in a unit radius circle,” Opt. Eng. 29, 672- 675 (1990).[1.17]. E. Freysz, B. Pouligny. F﹒Argoul, and A﹒Arneodo, “Optical wavelet transform of fractal aggregatet,” Phys﹒Rev﹒Lett.64, 7745-7748(1990).[1.18]. R.K.Martinet, J.Morlet, and A.Grossmann, “Analysis of sound patterns through wavelet transforms,” Int. J. Patt. Rec Art.Intell.1,273-302 (1987).[1.19]. M. Antonin, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using vector quantization in the wavelet transform domain,” in Proceedings of the international Conference on Acoustical Speech and Signal Processing, 2297-2300 (1990).[1.20]. D. Philippe, M. Benoit, and T. M. Dirk, “Signal adapted multrreolution transform for image coding,” IEEE. Trans. Inf. Theory, 38, 897-904 (1992).[1.21]. R. A. Devore, B. Jawerth, and P. J. Lucier, “Image compression through wavelet transform coding,” IEEE Trans. Inf. Theory 38, 719-746 (1992).[1.22]. P. J. Burt and E. H Adelson, “ Merging images through pattern decomposition.” In Applications of Digital Image Processing VIII, A. G. Tescher, ed., Proc. SPIE 575, 173-181 (1895).[1.23]. P. J. Burt and E. H Adelson, “The Lalacian pyramid as a compact image code,” IEEE Trans Commun. COM-31, 532-540 (1983).[1.24]. P. J. Burt, “The pyramid as a structure for efficient computation,” in Multiresolution Image Processing and Analysis, A. Rosenfeld, ed., Springer-Verlag, Berlin (1984).[1.25]. Rong-Seng Chang and Chin-Wu Lin, “Test the High Building Vibration and the Deformation During Earthquake by High Speed Camera wirh Moire Fringe Technique,” proc. SPIE 497, 36-39 (1984).[1.26]. Yun long Lay, R.S. Chang, P.W. Chen, and T.C. Chern, “CCD grating-generated Moire pattern for close-range measurement,” Photonics and Optelectronics, 3, 131-138 (1995).[1.27]. R.S. Chang, “Low cost moire pattern for the analysis of image stability,”proc. SPIE 462, 82-86 (1984).[1.28]. M. Meadows, M. W.O. Johnson, and J.B. Allen, “Generation of surface contours by Moire pattern,” Appl. Opt. 9, 942-950 (1970).[1.29]. I. Kaisto, J. Kostamovarra, M. Manninen, and R. Myllya, “Optical Range Finder for 1.5-10m Distance,” Appl. Opt. 22, 3258 (1983).[1.30]. P. Chavel and T.C. Strand, “Range Measurement using Talbot Diffraction Imaging of Grating,” Appl. Opt. 23, 862 (1984).[1.31]. G.T. Reid, “Moire fringes in Metrology,” Opt. Lasers Eng. 5, 63 (1984).[1.32]. G. Oster, “'Optical Art,”' Appl. Opt. 4, 1359 (1965).
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 光學薄膜應力量測與分析之探討 2 小波轉換應用於SPOT影像融合之分析 3 以多解析小波轉換為基礎的顯微影像接合系統 4 使用頻譜補償及小波技術進行全色態銳化影像融合之研究 5 多焦距融合方法基於拉普拉斯小波轉換 6 動態調整多張可見光影像與熱影像融合比例之強健人臉辨識 7 以互訊息分割法進行多焦距影像之融合技術

 1 侯英泠，醫療行為的民事上賠償責任－從德國醫師責任法切入探討（上），《月旦法學雜誌》，2001年5月，第72期。 2 邱琦，醫生沒有告訴我的話-論告知義務與不完全給付，《月旦法學雜誌》，2009年，第164期。 3 石崇良，行政院衛生署（2013年改名衛生福利部）企劃處，談醫療糾紛與醫學倫理的困境，《澄清醫護管理雜誌》，2013年4月，第9卷第2期。 4 陳聰富，醫療法：第三講─醫療行為與犯罪行為（上）─告知後同意的刑法上效果，《月旦法學教室》，2008年，第69期。 5 甘添貴，醫療糾紛與法律適用－論專斷醫療行為的刑事責任，《月旦法學雜誌》，2008年6月，第157期。 6 葛謹，急診室不是害人的場所－評臺灣高等法院96年度上易字第2020號刑事判決，《臺灣醫界》，2009年4月，Vol.52，No.4。

 1 多焦點繞射式光學元件設計 2 以光學干涉法分析電源轉換器品質 3 光學懸浮之軸向與橫向作用力之探討 4 砷化物850nm面射型半導體雷射與摻氮磷化鎵光學特性之研究 5 精巧型數位影像之距離及角度量測系統 6 光電實驗曲線係數擬合之研究 7 極化繞射光學元件製作與檢測 8 塑膠鏡片探討與塑膠望遠鏡設計 9 輕薄短小的DLP變焦投影鏡頭之設計探討 10 單模光纖雙向收發器光學系統之研究 11 快速光學響應液晶元件之動態機制研究 12 結合光纖插孔、固態浸沒式透鏡與精密電鍍微孔之光學頭研究 13 DNA配對光學量測理論及實驗 14 含雜訊系統之參數鑑別：離散小波轉換之應用 15 高階自由曲面面鏡之設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室