跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江念育
研究生(外文):Nien-Yu Chiang
論文名稱:週期性柱面波導結構頻散特性之分析
論文名稱(外文):Dispersion Analysis of Periodically Loaded Cylindrical Waveguides
指導教授:李清和李清和引用關係
指導教授(外文):Ching-Her Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:工業教育學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:40
中文關鍵詞:週期性柱面波導頻散特性模態匹配法
外文關鍵詞:periodically cylindrical waveguidedispersion characteristicsmode-matching techniqueFloquet's theorem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在應用模態匹配法及Floquet原理來分析柱面週期性波導結構的頻散特性。所探討之結構其中心為一具週期性皺褶的金屬圓柱,外圍則披覆多層介質,而最外層允許遮蔽金屬的存在;此外,皺褶的形狀與層數可為任意。在本論文中,我們先把形狀任意的皺摺結構近似為與座標系統契合的多層形狀,並將每一介電質層中的場以適當的特徵波模函數展開,再匹配各介質層的邊界條件以得到一頻散關係式,最後以數值分析方法解此方程式來求得整體結構的傳播常數。本研究中將探討柱面週期性波導結構中不同皺褶週期、不同凹陷寬度及深度和介電常數對頻散特性之影響。此外,對於柱面週期性結構的通帶和禁帶特性及其頻寬亦將作一研究。為求驗證,本論文將某些典型結構之數值計算結果與其他現有文獻者比較,發現都有極佳之吻合。

In this thesis, an approach using the mode-matching technique in conjunction with the Floquet’s theory is employed to analyze the periodically loaded corrugated cylindrical waveguides. The cylindrical waveguide under analysis consists of a periodically loaded corrugated center metallic cylinder covered with layered dielectrics. In addition, the geometry and the number of layers of the corrugation can be arbitrary. The outmost layer of the cylindrical periodic structure can be a shielding conductor. To analyze, we represent the electromagnetic fields in each layer with the appropriate eigenmode functions. Then boundary conditions at each interface between layers are imposed to obtain a system characteristic equation, from which the propagation constant of the whole periodical structure can be solved. In this work, effects of the period, width, and depth of the corrugation as well as the dielectric constants of the cover layers on the dispersion property are studied. The location and the bandwidth of the passband and stopband of the periodically loaded corrugated cylindrical waveguides are also examined. For validation, sample results obtained in this work for some typical structures are compared with data available in the literature, and excellent agreement is observed.

摘要
ABSTRACT
ACKNOWLEDGMENTS
TALE OF CONTENTS
LIST OF FIGURES
CHAPTER 1 INTRODUCTION
CHAPTER 2 FORMULATION FOR THE CYLINDRICAL WAVEGUIDE WITH PERIODICAL CORRUGATIONS
2-1 Vector Helmholtz Equations in Cylindrical Coordinates
2-2 Field Expressions and System Eigenvalue Equation
CHAPTER 3 NUMERICAL RESULTS AND DISCUSSION
3-1 Cylindrical Periodic Structures with Single-Layer Corrugation
3-2 Cylindrical Periodic Structures with Two-layer Corrugation
CHAPTER 4 CONCLUSIONS
REFERENCES
作者簡歷

[1] S. Amari, R. Vahldieck, and J. Bornemann, “Analysis of propagation in periodically loaded circular waveguides,” Proc. Inst. Elect. Eng., vol. 146, no. 1, pt. M, pp. 50-54, Feb. 1999.
[2] S. W. Chen, X. P. Liang, and K. A. Zaki, “Propagation in periodically loaded corrugated waveguides,” IEEE Trans. Magnetics, vol. 25, no. 4, pp. 3055-3057, July 1989.
[3] C. K. Birdsall and R. M. White, “Experiments with the forbidden regions of open periodic structures: application to absorptive filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-12, pp. 197-202, Mar. 1964.
[4] G. H. Bryant, “Propagation in corrugated waveguides,” Proc. Inst. Elect. Eng., vol. 116, no. 2, pp. 203-213, Feb. 1969.
[5] K. Zhang and D. Li, Electromagnetic theory for microwaves and optoelectronics, Springer, 1958.
[6] A. M. B. Al-Hariri, A. D. Olver, and P. J. B. Clarricoats, “Low-attenuation properties of corrugated rectangular waveguides,” Electron. Lett., vol. 10, no.15, pp. 304-305, July 1974.
[7] S. Amari, R. Vahldieck, J. Bornemann, and P. Leuchtmann, “Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 3, pp. 453-460, Mar. 2000.
[8] J. Esteban and J. M. Rebollar, “Characterization of corrugated waveguides by modal analysis,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 6, June 1991.
[9] S. Amari, R. Vahldieck, J. Bornemann, and P. Leuchtmann, “Analysis of corrugated waveguides with a set of edge-conditioned vector basis functions," IEEE Signal, System, and Electronics, pp. 482-487, Sept. 1998.
[10] S. Amari, J. Bornemann, and R. Vahldieck, “Fast and accurate analysis of waveguide filters by the coupled-integral-equations technique,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 9, pp. 1611-1618, Sept. 1997.
[11] F. J. Glandorf and I. Wolff, “A spectral-domain analysis of periodically nonuniform microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, no. 3, Mar. 1987.
[12] C. H. Lee and C. I G. Hsu, “Dispersion characteristics of fundamental and higher order modes of cylindrical microstrip lines with a cover layer,” Microwave Opt. Technol. Lett., vol. 16, no. 6, pp. 385-389, Dec. 1997.
[13] R. E. Collin, Field Theory of Guided Waves, New York: McGraw-Hill, 1991.
[14] R. S. Elliott, An introduction to guided waves and microwave circuits, Englewood Cliffs, N. J.: Prentice-Hall, 1993.
[15] J. F. Kiang and H. L. Hsu, Characteristics of microstrip line with periodically corrugated ground plane, M.S. Thesis, National Chung-Hsing University, 2001.
[16] M. I. Oksanen, “Space-harmonic analysis of multidepth corrugated waveguides,” Proc. Inst. Elect. Eng., vol. 136, no. 2, pt. H, pp. 151-158, Apr. 1989.
[17] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering, Englewood Cliffs, N. J.: Prentice-Hall, 1991.
[18] D. A. Watkins, Topics in electromagnetic theory, New York: John Wiley & Sons, Inc., 1958.
[19] R. E. Collin, Foundations for microwave engineering, 2nd ed., New York: McGraw-Hill, 1992.
[20] S. J. Chung and J. L. Chen, “A modified finite element method for analysis of finite periodic structures,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 7, July 1994.
[21] W. C. Chew, Waves and fields in inhomogeneous media, New York: Van Nostrand Reinhold, 1990.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top