跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余如晴
研究生(外文):Ru-Ching Yu
論文名稱:具雙芽基咯衍生物配位基或酮胺衍生物配位基之鋅及十三族金屬錯合物的合成、鑑定與開環聚合
論文名稱(外文):Synthesis, Characterization and Ring Opening Polymerization of Zinc and Group 13 Metal Complexes Incoporating with Bidentate Substituted Pyrrolyl Ligands or Ketiminate Ligands
指導教授:黃瑞賢黃瑞賢引用關係
指導教授(外文):Jui-Hsien Huang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:92
中文關鍵詞:酮胺開環聚合
外文關鍵詞:KetiminateRing Opening Polymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
雙芽基咯衍生物配位基部分:
以GaCl3為起始物,分別與一倍量、兩倍量、三倍量 [C4H3N(CH2N- Me2)-2]Li於-78℃下乙醚中經由metathesis形成 [C4H3N(CH2NMe2)-2]- GaCl2 1、[C4H3N(CH2NMe2)-2]2GaCl 2及[C4H3N(CH2NMe2)-2]3Ga 3。當complex 1與兩倍量RLi (R=Me, Bu)於乙醚中反應,經由transmetallation形成 [C4H3N(CH2NMe2)2]GaR2 (4a, R=Me; 4b, R=Bu)。當complex 2與一倍量RLi (R=Me, Bu)於乙醚中進行alkylation時,形成的[C4H3N(CH2NMe2)-2]2GaR並不穩定,藉由ligand exchange產生 [C4H3N(CH2NMe2)-2]GaR2與complex 3的混合物。
利用變溫1H NMR光譜對於gallium complex 3進行測試,發現complex 3進行流變反應,在溫度為278K時,訊號有合一( coalescence ) 的現象,計算得到此時的活化能大約為ΔG≠=10.4 kcal/mole。所有的新錯合物都經由1H和13C NMR光譜鑑定,而compound 4a 和compound 3使用X-ray加以確定。而compound 3 和compound 4a分別是四配位和五配位的gallium complexes。雙芽基pyrrole上的氮原子與金屬Ga是以共價鍵鍵結,其鍵長大約為1.9Å。而dimethylamino上的氮原子金屬Ga是以配位共價鍵鍵結,其鍵長大約為2.1~2.3Å。
酮胺衍生物配位基部分:
合成一系列具有酮胺配位基OCMeCHCMeNAr (Ar = 2,6-iPr2C6H3)的13族金屬化合物,並探討它們在光譜上或結構上的特徵。將已鋰鹽化的酮胺配位基在甲苯溶液以一倍或二倍量和MCl3 (M = Al, Ga, In)反應生成(OCMeCHCMeNAr)AlCl2 5、(OCMeCHCMeNAr)2AlCl 6、(OCMeCHCMeNAr)GaCl2 7、(OCMeCHCMeNAr)2GaCl 8、 (OCMeCHC- MeNAr)InCl2 9、或 (OCMeCHCMeNAr)2InCl 10。
令人驚訝的,將complex 6和一倍量的AgBF4在二氯甲烷和乙月青 混合溶劑中反應,會產生一般產率的(OCMeCHCMeNAr)2AlF 11。相同地,配位基以1比1或1比2和trialkylaluminum反應合成高產率四或五配位的鋁化合物(OCMeCHCMeNAr)AlR2 (12a, R =甲基; 12b, R =乙基)和(OCMeC-HCMeNAr)2AlR (13a, R =甲基; 13b, R =乙基)。而將 (OCMeCHCMeNAr)AlR2 和(OCMeCHCMeNAr)2AlR 以2:1 和 1:1 莫耳比率和isopropyl alcohol反應產生五配位的鋁環氧化物14。除此之外,將ZnEt2 和一倍量及兩倍量 OCMeCHCMeNHAr 分別反應產生(OCMeCHCMeNAr)ZnEt 15 及 (OCMeCHCMeNAr)2Zn 16。相同地,將 15 以1:1 莫耳比率和isopropyl alcohol反應產生四配位的鋅化合物16。
complexes、6、7、8、10、11、12a、12b、13a、13b和16的結構已經經由X-ray 鑑定。complexes 5、7、9、12a、12b和16都是金屬原子旁邊圍繞以一倍量氧原子和氮原子鉗合的酮胺配位基和兩倍量的烷基或滷基,以四面體結構存在。兩倍量酮胺配位基金屬complexes 6、8、10、11、13a、13b和14以二倍量的酮胺配位基鉗合,和一倍量的烷基或滷基結構存在。所有酮胺化合物對環己內酮有一般開環聚合的催化活性。
Abstract
Bidentate Substituted Pyrrolyl Ligands:
Reactions of GaCl3 with one, two, and three equivalents of [C4H3N(CH2NMe2)-2]Li in diethyl ether at -78℃ via metathesis afford [C4H3N(CH2NMe2)-2]GaCl2 1, [C4H3N(CH2NMe2)-2]2GaCl 2, and [C4H3N(CH2NMe2)-2]3Ga 3, respectively. Complex 1 reacts with two equiv of RLi (R=Me, Bu) in diethyl ether to afford [C4H3N(CH2N- Me2)-2]GaR2 (4a, R=Me; 4b, R=Bu) via transmetallation. While alkylat- ing 2 with one equiv RLi (R=Me, Bu) in diethyl ether, the intermediate, [C4H3N(CH2NMe2)-2]2GaR is thermal unstable and can be converted to the mixtures of [C4H3N(CH2NMe2)-2]GaR2 and 3 via ligand exchange.
Variable temperature 1H NMR spectroscopic experiments reveal that the five coordinated gallium complex 3 is fluxional and results a coalescence temperature at 5 C, which ΔG is calculated at ca. 10.4 Kcal/mole. All the new complexes have been characterized by 1H and 13C NMR spectroscopy and compounds 3 and 4a have also determined by X-ray crystallography. The structures of 3 and 4a are four- and five- coordinated gallium complexes, respectively. The pyrrolate nitrogen atom of the bidentate ligand is bonded to gallium via σ-bond with a distance of ca. 1.9Å. The bond length of the Ga atom to dimethylamino nitrogen atom which is coordinated to gallium is ca. 2.1~2.3Å.
Ketiminate Ligands:
A series of group 13 metal complexes featuring the ketiminate ligand, OCMeCHCMeNHAr (Ar= 2,6-iPr2C6H3), have been prepared and characterized spectroscopically and structurally. Reactions of MCl3 (M = Al, Ga, In) with 1 or 2 equiv of the lithiated ketiminate in toluene afforded bis(ketiminate) metal chloride complexes, (OCMeCHCMeN- Ar)AlCl2 5, (OCMeCHCMeNAr)2AlCl 6, (OCMeCHCMeNAr)GaCl2 7, (OCMeCHCMeNAr)2GaCl 8, (OCMeCHCMeNAr)InCl2 9, or (OCMeCH- CMeNAr)2InCl 10. Surprisingly, reacting 6 with 1 equiv of AgBF4 in methylene chloride/acetonitrile mix-solvents generates (OCMeCHCMe- NAr)2AlF 11 in moderate yield.
Similarly, reactions of OCMeCHCMeNHAr with trialkylaluminum in 1:1 or 1:2 molar ratio generate four- and five- coordinated aluminum complexes (OCMeCHCMeNAr)AlR2 (12a, R = Me; 12b, R = Et) and (OCMeCHCMeNAr)2AlR (13a, R = Me; 13b, R = Et) in high yield. Reactions of (OCMeCHCMeNAr)AlR2 and (OCMeCHCMeNAr)2AlR with isopropyl alcohol in 2:1 or 1:1 molar ratio generate five coordinated aluminum alkoxide complexe 14. Likewise, reacting ZnEt2 with one and two equivalents of OCMeCHCMeNHAr generates (OCMeCHCMeNAr)ZnEt 15 and (OCMeCHCMeNAr)2Zn 16, respective- ely. Reaction of 15 with isopropyl alcohol in 1:1 molar ratio generates 16.
The structures of complexes 6, 7, 8, 10, 11, 12a, 12b, 13a, 13b, and 16 have been determined by X-ray crystallography. Complexes 5, 7, 9, 12a, 12b,and 16 all exist as tetrahedron structures with the metal atom surrounded by the oxygen and nitrogen atoms of chelating ketiminate and two alkyl or halide groups. The bis-ketiminate metal complexes 6, 8, 10, 11, 13a, 13b, and 14 were chelated two equiv ketiminate and one alkyl or halide groups. Ketiminate complexes were all shown moderate catalytic activity toward the ring opening polymerization of ε-caprolactone.
目錄
章節 頁次
Abstract 壹
中文摘要 肆
第一章 緒論 1
第二章 實驗部分
2-1 一般實驗 10
2-2 物理性質的測量 10
2-3-1 配製2-dimethylaminomethylpyrrole 11
2-3-2 配製Lithium 2-dimethylaminomethylpyrrolate 12
2-3-3 配製 [C4H3N(CH2NMe2)-2]GaCl2 (1) 13
2-3-4 配製 [C4H3N(CH2NMe2)-2]2GaCl (2) 13
2-3-5 配製 [C4H3N(CH2NMe2)-2]3Ga (3) 14
2-3-6 配製 [C4H3N(CH2NMe2)-2]GaR2 (4a,4b) 15
2-4-1 配製OCMeCHCMeNHAr (Ar = 2,6-iPr2C6H3) 16
2-4-2 配製LiOCMeCHCMeNAr 17
2-4-3 配製(OCMeCHCMeNAr)AlCl2 -(5) 17
2-4-4 配製(OCMeCHCMeNAr)2AlCl -(6) 18
2-4-5 配製(OCMeCHCMeNAr)GaCl2 -(7) 18
2-4-6 配製(OCMeCHCMeNAr)2GaCl -(8) 19
2-4-7 配製(OCMeCHCMeNAr)InCl2 -(9) 20
2-4-8 配製(OCMeCHCMeNAr)2InCl -(10) 20
2-4-9 配製(OCMeCHCMeNAr)2AlF -(11) 21
2-4-10 配製(OCMeCHCMeNAr)AlR2 -(12a,12b) 22
2-4-11 配製(OCMeCHCMeNAr)2AlR -(13a,13b) 23
2-4-12 配製(OCMeCHCMeNAr)2AlOiPr -(14) 24
2-4-13 配製(OCMeCHCMeNAr) ZnEt -(15) 25
2-4-14 配製(OCMeCHCMeNAr)2Zn -(16) 26
第三章 結果與討論
3-1 雙芽基咯衍生物配位基的合成 27
3-2利用2-(dimethylaminomethyl)pyrrole為配位基的錯合
物合成與烷基化 27
3-2-1 [C4H3N(CH2NMe2)-2]GaCl2 (1) 29
3-2-2 [C4H3N(CH2NMe2)-2]2GaCl (2) 29
3-2-3 [C4H3N(CH2NMe2)-2]3Ga (3) 30
3-2-4 [C4H3N(CH2NMe2)-2]GaR2 (4a,4b) 34
3-2-5 雙芽基咯衍生物配位基合成討論 37
3-3酮胺衍生物配位基的合成 40
3-4 利用OCMeCHCMeNHAr為配位基的錯合物合成與烷基化 40
3-4-1 (OCMeCHCMeNAr)AlCl2 -(5) 43
3-4-2 (OCMeCHCMeNAr)2AlCl -(6) 44
3-4-3 (OCMeCHCMeNAr)GaCl2 -(7) 46
3-4-4 (OCMeCHCMeNAr)2GaCl -(8) 49
3-4-5 (OCMeCHCMeNAr)InCl2 -(9) 51
3-4-6 (OCMeCHCMeNAr)2InCl -(10) 52
3-4-7 (OCMeCHCMeNAr)2AlF -(11) 54
3-4-8 (OCMeCHCMeNAr)AlR2 -(12a,12b) 57
3-4-9 (OCMeCHCMeNAr)2AlR -(13a,13b) 62
3-4-10(OCMeCHCMeNAr)2AlOiPr -(14) 67
3-4-11 (OCMeCHCMeNAr) ZnEt -(15) 68
3-4-12 (OCMeCHCMeNAr)2Zn (16) 70
3-4-13 酮胺衍生物配位基合成討論 72
3-4-14 酮胺衍生物配位基光譜及結構討論 73
第四章 金屬化合物對ε-環己內酮(ε-caprolactone)的開
環聚合反應
4-1介紹 82
4-2 聚合反應 84
參考資料 88
參考資料
(1) Britovsek, J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem.
Int. Ed. 1999, 38, 428.
(2) (a) Killian, C. M.; Tempel, D. J.; Johnson, L. K.;
Brookhart, M. J. Am. Chem. Soc., 1996, 118, 11664. (b)
Dawson, D. Y.; Sangalang, J. C.; Arnold, J. J. Am. Chem.
Soc. 1996, 118, 6082. (c) Schrock, R. R. Acc. Chem. Res.
1997, 30, 9. (d) Black, D. G.; Jordan, R. F.; Rogers, R. D.
Inorg. Chem. 1997, 36, 103. (e) Fryzuk, M. D.; Love, J. B.
Rettig, S. J.; Young, V. G. Science 1997, 175, 1445. (f)
Brussee, E. A. C.; Meetsma, A.; Hessen, B.; Teuben, J. H.
Organometallics 1998, 17, 4090. (g) Scollard, J. D.;
McConville, D. H.; Rettig, S. J. Organometallics 1997, 16,
1810. (h) Scollard, J. D.; McConville, D. H. J. Am. Chem.
Soc. 1996, 118, 10008. (i) Warren, T. H.; Schrock, R. R.;
Davis, W. M. Organometallics 1996, 15, 562.
(3) Yamamoto, H. “Lewis acids in organic synthesis”; Wiley-
VCH 2000.
(4) Boor, J., Jr. “Ziegler-Natta catalysts and
polymerization”; Academic: New Yory, 1979.
(5) (a) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408.
(b) Hitchcock, P. B.; Lapprt, M. F.; Layh, M. Chem. Commun.
1998, 201. (c) Clegg, W.; Cope, E. K.; Edwards, A. J.;
Mair, F. S. Inorg. Chem. 1998, 37, 2317. (d) Cheng, M.;
Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc., 1998,
120, 11018. (e) Cheng, M.; Attygalle, A. B.; Lobkovsky, E.
B.;Coates, G. W. J. Am. Chem. Soc., 1999, 121, 11583 (f)
Chamberlain, B. M.;Cheng, M.; Moore, D. R.; Lobkovsky, E.
B.;Coates, G. W. J. Am. Chem. Soc., 2001, 123, 3229. (g)
Cheng, M.; Moore, D. R.;Reczek, J. J.; Chamberlain, B. M.;
Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc., 2001,
123, 8739. (h) Qian, B.; Ward, D. L.; Smith, M. R., III.
Organometallics 1998, 17, 3070. (i) Qian, B.; Scanlon, W.
J., IV; Smith, M. R., III. Organometallics 1999, 18, 1693.
(j) Kakaliou, L.; Scanlon, W. J., IV; Qian, B.; Baek, S.
W.; Smith, M. R., III. Inorg. Chem. 1999, 38, 5964. (k)
Qian, B.; Baek, S. W.; Smith, M. R., III. Polyhedron 1999,
18, 2405. (l) Prust, J.; Stasch, a.; Zheng, W.; Roesky, H.
W.; Alexopoulos, E,; Usón, I.; Böhler, O.; Schuchardt, T.
Organometallics 2001, 20, 3825. (m) Cui, C.; Roesky, H. W.;
Hao, H.; Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int.
Ed.2000, 39, 1815. (n) Cui, C.; Roesky, H. W.; Hao, H.;
Schmidt, H. —G.; Noltemeyer, M. Angew. Chem. Int. Ed.
2000, 39, 4531. (o) Cui, C.; Roesky, H. W.; Schmidt, H. —
G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Angew. Chem. Int.
Ed. 2000, 39, 4274. (p) Stender, M.; Eichler, B. E.;
Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.;
Roesky, H. W. Inorg. Chem. 2001, 40, 2794. (q) Radzewich,
C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999,
121, 8673. (r) Radzewich, C. E.; Coles, M. P.; Jordan, R.
F. J. Am. Chem. Soc. 1998, 120, 9384. (s) Hardman, N. J.;
Power, P. P. Inorg. Chem. 2001, 40, 2474. (t) Lee, L. W.
M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, M.
Organometallics 1998, 18, 2947. (u) Bailey, P. J.; Dick, C.
M. E.; Fabore, S.; Parsons, S. J. Chem. Soc. Dalton Trans.
2000, 1655.(v) Budzelaar, P. H. M.; de Gelder, R.; Gal, A.
W. Organometallics 1998, 19, 4121. (w) Budzelaar, P. H. M.;
van Oort, A. B.; Orpen, A. G. Eur. J. Inog. Chem. 1998,
1485. (x) Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder,
R.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. 2000,
753. (y) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin,
S.; Taylor, N. J.; Collins, S. Organometallics 2000, 19,
2161. (z) Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S.
Organometallics 1998, 17, 1315. (aa) Hitchcock, P. B.;
Lappert, M. F.; Liu, D. —S. J. Chem. Soc. Chem. Commun.
1994, 1699. (ab) Hitchcock, P. B.; Lappert, M. F.; Liu,
D. —S. J. Chem. Soc. Chem. Commun. 1994, 2637. (ac)
Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W.
J.; Calabrese, J. C.; Arthur, S. O. Organometallics 1997,
16, 1514. (ad) Gibson, V. C.; Segal, J. A.; White, A. J.
P.; Williams, D. J. J. Am. Chem. Soc. 2000, 122, 7120. (ae)
Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.;
Solan, G. A.; White, A. J. P.; Williams, D. J. Chem.
Commun. 1998, 1651.
(6) (a) Tung, Y. —L.; Tseng, W. —c,; Lee, C. —Y.; Hsu, P. —
F.; Chi, Y.; Peng, S, -M.; Lee, G. —H. Organometallics
1999, 18, 864. (b) Shin, H. —K.; Hampden-Smith, M. J.;
Kodas, T. T.; Rheingold, A. L. J. Chem. Soc. Chem. Commun.
1992, 217. (c) Iido, H.; Yuasa, Y.; Kibayashi, C.; Iitaka,
Y. J. Chem. Soc. Dalton Trans. 1981, 2212. (d) Jones, D.;
Roberts, A.; Cavell, K.; Keim, W.; Englert, U.; Skelton, B.
W.; White, A. H. J. Chem. Soc. Dalton trans. 1998, 255.
(7) (a)Strauch, J.; Warren, T. H.; Erker, G.; Fröhlich, R.;
Saarenketo, P. Inorg. Chim. Acta. 2000, 300, 810. (b)
Matilainen, L.; Klinga, M.; Leskelä, M. J. Chem. Soc.
Dalton Trans. 1996, 219. (c) García-Raso, A.; Fiol, J. J.;
López-Zafra, A.; Mara, I.; Eapinosa, E.; Molins, E.
Polyhedron. 2000, 19, 673. (d) Darensbourg, D. J.; Rainey,
P.; Yarbrough, J. Inorg. Chem. 2001, 40, 986. (e) Chisholm,
M. H.; Gallucci, J. C.; Zhen, H,; Huffman, J. C. Inorg.
Chem. 2001, 40, 5051. (f) Dubé, T.; Gambarotta, S.; Yap,
G. Organometallics 1998, 17, 3967.
(8) (a) Rennekamp, C.; Wessel, H.; Roesky, H. W.; Muller, P.;
Schmidt, H. -G.; Noltemeyer, M.; Uson, I.; Barron, A.R.
Inorg. Chem. 1999, 38, 5235.(b) Roesky, H. W.; Stasch, A.;
Hatop, H.; Rennekamp, C.; Hamilton, D.H.; Noltemeyer, M.;
Schmidt, H.-G. Angew. Chem. Int. Ed. 2000, 39, 171.(c)
Hatop, H.; Roesky, H. W.; Labahn, T.; Ropken, C.;
Sheldrick, G. M.; Bhattachatjee, M.; Organometallics 1998,
17, 4326.(d) Waezsada, S. D.; Feng-Quan Liu.; Barnes, C.
E.; Roesky, H.W.; Montero, M. L.; Uson, I. Angew. Chem.
Int. Ed. 1997, 36, 2625.(e) Schnitter, C.; Klimek, K.;
Roesky, H.W.; Albers, T.; Schmidt, H. -G.; Ro¨pken, C.;
Parisini, E. Organometallics 1998, 17, 2249.
(9) 林建中(民76)高分子化學原理(9版)。歐亞書局。
(10)Geroge&Odian (1981).Principles of Polymerization.New
York:Wiley.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文