跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張郁妮
研究生(外文):Yuni Chang
論文名稱:砷化物850nm面射型半導體雷射與摻氮磷化鎵光學特性之研究
論文名稱(外文):Optical Properties of the III-As 850 nm Vertical-Cavity Surface-Emitting Lasers and N-doped GaP
指導教授:郭艷光
指導教授(外文):Yen Kuang Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:140
中文關鍵詞:面射型雷射磷化鎵多層膜反射鏡
外文關鍵詞:850 nmVCSELGaPDBR
相關次數:
  • 被引用被引用:3
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文有兩個主要的研究主題,第一個研究主題是砷化物面射型半導體雷射,我們要比較不同活性層對雷射效率的影響,同時也對多層膜反射鏡做詳細的探討;第二個主題是摻氮磷化鎵的光學特性研究,目的在於瞭解摻氮磷化鎵的發光頻譜隨溫度與光源激發功率的變化情形。本論文共有五章,第一章是在討論砷化鋁鎵與砷磷化銦鎵系統的材料特性,其中包含:晶格常數、能帶間隙、光學特性與電性等,以及不同結構的砷化物紅光發光二極體與其他材料所做的發光二極體發光效率之比較。另外,我們也討論應力對物質特性與元件操作效率的影響,並且討論塊材、量子井、超晶格結構的臨界厚度對應力的關係。
第二章主要在介紹多層膜反射鏡與面射型半導體雷射的工作原理及特性,在此章節中我們用傳統的疊加法與矩陣法來分析多層膜反射鏡,並且進一步用矩陣光學的原理配合Mathcad軟體來模擬階梯式與漸變式多層膜反射鏡的反射特性以及反射頻譜對光入射角度的變化,最後再討論正面發光與背面發光的面射型雷射之優缺點。
在第三章中我們比較GaAs/AlGaAs、InGaAs/AlGaAs、InGaAsP/InGaP等三種單一量子井在波長850 nm的自發輻射速率大小,再用效率最好與最差的量子井來做面射型半導體雷射的活性層,進一步分析不同活性層對元件操作特性的影響,其中包含:載子濃度對空間的分佈、受激輻射速率的大小、電流對輸出功率與主次要模式壓制比例的關係,最後還有元件特性溫度的比較。另外,我們也對面射型半導體雷射晶片進行變溫及變功率的光激螢光法量測與穿透率量測,再由穿透頻譜推算出反射頻譜,並且把實驗所得到的結果與理論模擬的結果互相比對,以確保實驗與模擬的正確性。
第四章中我們討論摻氮磷化鎵的光學特性,我們對一片摻氮磷化鎵晶片做變溫與變功率的光激螢光法測量,藉由摻氮磷化鎵來研究均電性摻雜的特性,從參考文獻與我們所觀察到的頻譜結果可以知道均電性摻雜有吸引激子的特性,尤其在低溫時更是明顯,而且這種特性對樣品的發光效率有很大的影響與幫助。第五章總結的部份是我們將前四章的內容做回顧與簡單的結論。

In this thesis we focus on two major topics. The first topic is on the performance of As-based 850 nm vertical-cavity surface-emitting laser, in which we study the effect of different active-layer materials on the laser efficiency. In the mean time, we do detailed investigation on the characteristics of the distributed Bragg reflector. The second topic of this thesis concerns the optical property of the N-doped GaP. The main goal is to investigate the emitting spectra of the N-doped GaP under different temperatures and pump power levels. There are five chapters in this thesis. The first chapter is the introduction of the AlGaAs and InGaAsP materials, including lattice constant, energy band gap, optical and electrical properties. Furthermore, we compare the emitting efficiency of the AlGaAs based red LED with that of the LED based on other materials. Moreover, we discuss the effect of strain on material parameters and performance of laser devices. In addition, we also discuss the critical thickness of the bulk, quantum well, and super lattice structures under strain.
In the second chapter, we introduce the theory and properties of distributed Bragg reflector (DBR) and vertical-cavity surface-emitting laser (VCSEL). We use both the linear summation and matrix method to analyze the DBR. Then, we utilize the matrix optics and Mathcad software to simulate the influences of pair numbers and incident angle on reflectivity spectra of step and graded DBR. Furthermore, we discuss the characteristics of the top-emitting and bottum-emitting VCSELs.
We compare the light emitting efficiency of the GaAs/AlGaAs, InGaAs/AlGaAs and InGaAsP/InP single quantum well at 850 nm in the third chapter, and broach the quantum wells that result in the best and worst emitting efficiency into the active layer of VCSELs to do more complete analysis and comparison, including carrier concentration distribution, stimulated recombination rate, the curve of output power and main-side mode suppression ratio versus injection current, and the characteristic temperatures of devices with different active layers. Besides, we also measure the photoluminescence spectra under different temperatures and pump power levels and the transmission spectra at room temperature of a VCSEL sample. We then calculate the reflectivity spectra from the transmission spectra and have results compared with that obtained from numerical simulations to justify the correctness of the experiments and simulations.
The fourth chapter focuses on the optical properties of the isoelectronic N-doped GaP. The isoelectronic doping has a feature of trapping excitons, especially at low temperatures, and the feature improves the emitting efficiency a lot. We measure the temperature dependent and excitation power dependent photoluminescence spectra of a GaP:N sample. In the last chapter we make a review and conclusion of the previous four chapters.

誌謝…………………………….…………………………………………..I
中文摘要…………………………………………………………………..II
英文摘要……………………………………………………...………….IIII
總目錄…………………………………………………………………….VI
圖表目錄………………………………………………………………..VIII
第一章 砷化物之材料特性與發展歷程簡介………………..1
1.1 砷化物材料的光學特性…………………………...………………….1
1.1.1 砷化鋁鎵系統………………...……..…………………………..1
1.1. 2砷磷化銦鎵系統……………….………………………………..4
1.2 砷化物材料的電性……………………………………………………7
1.3 與其他紅光LED的比較…………………………………………….10
1.4 應力的效應…………………………………………………………..13
1.5 結論…………………………………………………………………..19
參考文獻………………………………………………………………….21
第二章 DBR與VCSEL的原理與簡介……………………23
2.1 DBR的工作原理與理論模擬……………………………………….24
2.2 面射型半導體雷射(VCSEL)的原理與特性………………………..39
2.3 結論…………………………………………………………………..43
參考文獻………………………………………………………………….44
第三章 850 nm VCSEL的模擬與實驗……………………46
3.1 模擬部份……………………………………………………………..46
3.1.1 DBR的選擇……………………………………………………46
3.1.2活性層與元件的模擬及討論………………………………….48
3.2 實驗部份……………………………………………………………..60
3.2.1光激螢光法測量………………………………….……………60
3.2.2反射率測量……………………………….………..…………..67
3.3 結論………………………………………………………………..…70
參考文獻……………………………………………………………….…72
第四章 均電性摻雜的GaP:N的PL量測…………………74
4.1 GaP:N的材料介紹…………………………………………………..74
4.2 光激螢光法的量測結果與分析…………………………………..…79
4.3 結論………………………………………………………………..…97
參考文獻…………………………………………………………….……98
第五章 總結…………………………………………………99
附錄一 發表論文清單………………………………………...i
附錄二 Applied Optics與物理雙月刊期刊論文………....….v
附錄三 PICS3D程式說明………………………....…….…..iv

[1] R. Williams, Modern GaAs Processing Methods, Artech House Inc, USA, 1990.
[2] G. B. Stringfellow, and M. George Craford, High Brightness Light Emitting Diodes: Semiconductors and Semimetals Volume 48, Academic Press, San Diego, California, USA, 1997.
[3] P. S. Zory, Jr., Quantum Well Lasers, Academic Press, San Diego, California, USA, 1993.
[4] T. Ouchi, T. Sato, H. Sakata, and Y. Handa, “Integration of thin-film vertical-cavity surface-emitting lasers on AlN substrates using a functional layer transfer technique,” Appl. Phys. Lett., vol. 77, pp. 1602-1604, 2000.
[5] B. G. Streetman, Solid State Electronic Devices, 4th ed., Prentice-Hall, USA, 1995.
[6] G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, USA, 1993.
[7] S. Adachi, “Material parameters of In1 — xGaxAsyP1 — y and related binaries,” J. Appl. Phys., vol. 53, pp. 8775-8792, 1982.
[8] H. Asai, and K.Oe, “Energy band-gap shift with elastic strain in GaxIn1 — xP epitaxial layers on (001) GaAs substrates,” J. Appl. Phys., vol. 54, pp. 2052-2056, 1983.
[9] G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, “Far-infrared photoconductivity in high purity GaAs,” Semiconductors and Semimatels, vol. 12, pp. 169-290. 1977.
[10] H. E. Ruda, L. Jedral, and L. Mannik, “Green photoluminescence in GaP:Zn,O grown by liquid-phase epitaxy,” Phys. Revi. B, vol. 44, pp. 8702-8706, 1991.
[11] G. P. Agrawal, Semiconductor Lasers, American Institute of Physics, USA, 1995.
[12] J. J. Coleman, K. J. Beernink, and M. E. Givens. “Threshold corrent density in strained layer InxGa1-xAs-GaAs quantum-well heterostructure lasers,” J. Quan. Elec., vol. 28, pp. 1983-1989, 1992.
[13] E. Yablonovitch and E. O. Kane, “Band structure engineering of semiconductor lasers for communications,” Jour. of Lightwave Tech., vol. 6, pp. 1292-1299, 1988.
[1] G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, USA, 1993.
[2] M. Born, and E. Wolf, Principle of Optics: electromagnetic theory of propagation, interference and diffraction of light, 4th ed., New York: Pergamon Press, 1977.
[3] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Publishing Company, 1998.
[4] M. V. Klein, and T. E. Furtak, Optics, 2nd ed., John Wiley & Sons, Inc., 1986.
[5] K. Tai, G. Hasnain, J. D. Wynn, R. J. Fischer, Y. H. Wang, B. Weir, J. Gamelin and A.Y. Cho, “90 % coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8 mu m diameter core silica fibre,” Elec. Lett., vol 26, pp. 1628-1629, 1990.
[6] G. P. Agrawal, Semiconductor Laser, American Institute of Physics, USA, 1995.
[7] K. L. Lear, R. P. Schneider, K. D. Choquette, J. J. Figiel, and J. C. Zolper, “Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy,” IEEE Phot. Tech. Lett., vol. 6, pp. 1053-1055, 1994.
[8] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr, S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertocal cavity surface emitting lasers with 50 % power conversion efficiency,” Elec. Lett., vol 31, pp. 208-209, 1995.
[9] G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Wier, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductoe distributed Bragg reflectors,” IEEE Jour. of Quan. Elec., vol. 27, pp. 1377-1385, 1991.
[10] C. T. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Mutiple wavelength tunable surface-emitting laser arrays,” IEEE Jour. of Quan. Elec., vol. 27, pp. 1368-1376, 1991.
[11] R. H. Horng, Y. C. Li, and D. S. Wuu, “Bottom-emitting 850nm vcsels fabricated by wafer fusion technology,” Optics and Photonics Taiwan, pp. 117-119, 2001.
[12] M. Orenstein and Y. Satuby, “Transverse modes and lasing characteristics of selectively grown vertical cavity semiconductor lasers,” Appl. Phys. Lett., vol. 69, pp.1840-1842, 1996.
[1] G. B. Stringfellow, and M. George Craford, High Brightness Light Emitting Diodes: Semiconductors and Semimetals Volume 48, Academic Press, San Diego, California, USA, 1997.
[2] C. Kittel, Introduction to Solid State Physics, 6th ed., John Wiley & Sons, Inc.,1986.
[3] G. P. Agrawal, Semiconductor Laser, American Institute of Physics, USA, 1995.
[4] S. Nakamura, Gerhard Fasol, The Blue Laser Diode, Springer-Verlag, Heidelberg, 1997.
[5] P. S. Zory, Jr., Quantum Well Lasers, Academic Press, San Diego, California, USA, 1993.
[6] J. Gebauer, R. Krause-Rehberg, and S. Eichler, “Ga vacancies in low-temperature-grown GaAs identified by slow positrons,” Appl. Phys. Lett., vol. 71, pp. 638-640, 1997.
[7] D. C. Reynolds, D. C. look, D.N. Talwar, G. L. McCoy, and K. R. Evans, “Demonstrarion of semiconductor characterization by phonon sidebands in photoluminescence,” Phys. Rev. B, vol. 51, pp. 2572-2575, 1995.
[8] D. C. Reynolds, D. C. Look, R. Kaspi, and D. C. Talwar, “Phonon replicas in the photoluminescence emission of AlxGa1-xAs layer,” Appl. Phys. Lett., vol. 66, pp.3447-3449, 1995.
[9] R. Williams, Modern GaAs Processing Methods, Artech House Inc., USA, 1990.
[10] S. Naritsuka, Y. Nishiwaka, H. Sugawara, M. Ishikawa, and Y. Kokubun, “Photoluminescence studies on InGaAlP layers grown by low-pressure metalorganic chemical vapor deposition,” J. Elec. Mate., vol. 20, pp. 687-690, 1991.
[11] G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, USA, 1993.
[1] H. Alawadhi, R. Vogelgesang, and A. K. Ramdas, “Indirect transitions, free and impurity-bound excitons in gallium phosphide: a revisit with modulation and photoluminescence spectroscopy,” J. Appl. Phys., vol. 82, pp.4331-4337, 1997.
[2] W. T. Masselink and Y. -C. Chang, “Theory of the exciton bound to an isoelectronic trap in GaP,” Phys. Rev. Lett., vol. 51, pp. 509-512, 1983.
[3] S. Miyoshi, H. Yaguchi, K. Onabe, and R. Ito, “Metalorganic vapor phase epitaxy of GaP1-xNx alloys on GaP,” Appl. Phys. Lett., vol. 63, pp. 3506-3508, 1993.
[4] M. Singh and J. Weber, “Shallow impurity neutralization in GaP by atomic hydrogen,” Appl. Phys. Lett., Vol. 54, pp. 424-426, 1989.
[5] Y. Zhang, W. Ge, and M. D. Sturge, “Photon sidebands of exciton bound to isoelectronic impurities in semiconductors,” Phys. Rev. B., vol. 47, pp. 6330-6339, 1993.
[6] J. N. Baillargeon, K. Y. Cheng, “Yellow-green luminescence from isoelectronic nitrogen centers in GaP grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 70, pp. 1841-1843, 1991.
[7] J. N. Baillargeon, K. Y. Cheng, G. E. Hofler, P. J. Pearch, and K. C. Hsieh, “Luminescence quenching and the formation of the GaP1-xNx alloy in GaP with increasing nitrogen content,” Appl. Phys. Lett., vol. 60, pp. 2540-2542, 1992.
[8] X. Liu, S. G. Bishop, J. N. Baillargeon, and K. Y. Cheng, “Band gap bowing in GaP1-xNx alloys,” Appl. Phys. Lett., vol. 63, pp. 208-210, 1993.
[9] S. Naritsuka, Y. Nishiwaka, H. Sugawara, M. Ishikawa, and Y. Kokubun, “Photoluminescence studies on InGaAlP layers grown by low-pressure metalorganic chemical vapor deposition,” J. Elec. Mate., vol. 20, pp. 687-690, 1991.
[10] Q. Hong, K. Dou and X. Zhang, “Radiative and nonradiative recombination of bound excitons in GaP:N. III. Reverse tunneling of bound excitons,” Phys. Revi. B, vol. 41, pp. 1386-1389, 1990.
[11] P. L. Hugon and H. Mariette, “Stochastic transfer of excitations and exhancement of the NNa-pair luminescence in GaP:N,” Phys. Revi. B, vol. 30, pp. 1622-1625, 1984.
[12] M. D. Sturge, E. Cohen and K. F. Rodgers, “Thermal quenching processes in the low temperature photoluminescence of excitons bound to nitrogen pairs in GaP,” Phys. Revi. B, vol. 15, pp.3169-3179, 1977.
[13] S. Coffa, F. Priolo, and G.Franzo, “Optical activation and excitation mechanisms of Er implanted in Si,” Phys. Revi. B, vol. 48, pp.11782-11788, 1993.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊