跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文偉
研究生(外文):Wen-Wei Lin
論文名稱:氮化硼鋁鎵銦能帶結構特性之理論研究
論文名稱(外文):Theoretical Investigation on Band Structure of the BAlGaInN Semiconductor Materials
指導教授:郭艷光
指導教授(外文):Yen-Kuang Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:121
中文關鍵詞:氮化硼鋁鎵銦Ⅲ-氮化物能帶間隙能隙彎曲參數
外文關鍵詞:BAlGaInNⅢ-nitrideband-gap energybowing parameter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
雖然三五族氮化物(Ⅲ-nitride)半導體目前已經被廣泛的應用在各種電子及發光元件上,但是相對於其他傳統的光電半導體而言,它的一些相關的物理發展得並不是很完備。因此我在這篇論文中,針對三元的三五族氮化物能帶結構加以探討,此項研究所使用的是國科會高速電腦中心的CASTEP模擬軟體,我將所要研究的材料結構、晶格常數、組成元素....等參數設定後,進而計算出材料的能帶結構並加以分析。
在第一、二章中我先簡單介紹半導體材料的一些相關的晶體學與元素特性,以作為往後研究上的一些先備知識,並簡述這種能帶理論計算的發展歷程,以及本論文所使用的CASTEP模擬軟體。
第三章開始進入主要的研究主題,在這一章裡我針對商業上最常見的三元wurtzite-AlGaInN系統作一系列的模擬,探討不同成份濃度下的能帶間隙值、價電帶厚度及能帶間隙對濃度公式中的bowing係數大小等性質。另外,考慮在實際長晶時,薄膜一般不會是理想不受力的情況,多少都會受到基板或相近磊晶層的拉扯,而產生應力進而造成晶格的變形,所以我也同時研究在不同應力的條件下,能帶間隙值、價電帶厚度及彎曲係數的對應變化情形。另一方面,氮化銦鎵(InGaN)在銦濃度較高時容易產生銦集中的現象,針對這點我也作了進一步的模擬,觀察它對能帶結構產生的影響。
第四章為延續第三章中的主題,只是把結構由wurtzite換成另一種常見的zinc-blende結構。而在zinc-blende結構中,有時會出現隨著化合物成份的改變,半導體材料由直接能帶間隙轉變為間接能帶間隙的情形,所以在第四章中我也同時觀察直接與間接能帶間隙變化的情形,及直接能帶間隙轉變為間接能帶間隙的濃度點。
基於前面第三、四章的研究結果,在第五章中我更進一步的嘗試去研究較少人探討的含硼三元氮化物的能帶結構與其相關的特性,並對三元氮化物能帶間隙隨濃度變化的bowing現象作初步的解釋。最後在第六章,我將這篇論文的內容再作個回顧與結論。
Although the Ⅲ-nitride semiconductor materials have been applied extensively to various optical and electronic devices, there still exist a lot of physics related to the Ⅲ-nitrides that need to be clarified. In my thesis, I focus on the investigation of the band structures of the Ⅲ-nitrides. The simulation program that I use in this thesis is CASTEP, which is provided by the National Center for High-Performance Computing, National Science Council of the Republic of China. For the simulation of each semiconductor material, the band straucture is obtained after the atomic structure, lattice contants, and composing elements are properly defined. After then, more properties of the semiconductor materials under study, such as the band-gap energy, the valance band width, and the direct/indirect band-gap characteristics, may be analyzed from the band structures.
In the first and second chapters, I do a brief overview on some essential properties about crystal structures and composing elements to help the readers understand the Ⅲ-nitrides. Moreover, I give a brief introduction about the developmental hsitory of band structure calculation and the CASTEP simulation program that I use for this research.
The main contents of my thesis start from chapter 3. In this chapter I do a series of simulations for common AlGaInN of wurtzite structure to obtain the band-gap energies, the valence band widths in different compositions, and the bowing parameters of the ternary Ⅲ-nitrides. For actual crystal growth, the Ⅲ-nitride thin film might suffer from compressive or tensile strain due to the lattice mismatch between the active layers and the substrate or other layers in the neighborhood, which results in the deformation of the crystal lattice. Hence, I also investigate the variation of the band-gap energies, valence band widths and bowing parameters under different degree of strain. In addition, there exist an indium-rich phenomenon when the compositon of the indium in ternary InGaN is high. A few simulations regarding this issue have also been conducted.
The contents discussed in chapter 4 are similar to that in chapter 3, except that the cystal structure is changed from wurtzite to zinc-blende. For each ternary zinc-blende Ⅲ-nitride semiconductor, it can be either a direct band-gap material or an indirect band-gap material, depending on the composition of the composing elements. Hence, special attention is paid to the transition from a direct band-gap semiconductor to an indirect band-gap semiconductor for each ternary Ⅲ-nitride semiconductor material under study.
Based on the results obtained in chapters 3 and 4, I try to simulate another new material system in chapter 5 - the ternary B(Al,Ga,In)N. Since this ternary B(Al,Ga,In)N semiconductor is less investigated in the past few years, much effort is still required to explore its characteristics. Simulation results indicate that the ternary B(Al,Ga,In)N semiconductor materials have relatively high bowing parameters. The possible cause for this phenomenon will be discussed. Finally, in chapter 6 I will review the major results in my thesis and make a conclusion.
目 錄
目錄 …………………………………………..……………………….. IV
中文摘要 ………………………………..…………………………… VIII
英文摘要 ……………………………………………………………… X
圖表索引 ……………………………………………..…………….. XIII
第一章 Ⅲ-Ⅴ氮化硼鋁鎵銦材料之結構與特性簡介 ……….…. 1
1.1 從晶體結學談起 ……………………..………. 2
1.1.1 晶體之群論 ………………………………… 2
1.1.2 晶體座標系-晶系 ………………………...…. 3
1.1.3 認識基本晶體符號……………………….... 6
1.1.4 測量晶體種類的方法 ……………………… 10
1.2 從元素特性談起 …………………………………. 12
參考文獻 ……………………………………………………………….. 15
第二章 能帶計算之歷程與理論簡介 ……………….…….. 16
2.1 能帶計算的發展歷程 ……………………………. 16
2.1.1較早前用半經驗(semi-empirical)的研究 …… 16
2.1.2目前較被接受的密度涵數理論 ……………… 18
2.2 CASTEP模擬軟體簡介 …………………………. 20
參考文獻 ……………………………………………………………….. 23
第三章 Wurtzite結構之氮化鋁鎵銦能帶特性 …………… 24
3.1 氮化銦鎵之能帶特性 ……….….…..…….….…. 24
3.1.1 理想未受應力時之特性 ………………….. 24
3.1.2 材料受應力情形簡介 ………………….. 29
3.1.3受應力壓縮或伸長時之特性 …………….. 33
3.1.4 銦集中(Indium Rich)對能帶之影響 ….. 38
3.2氮化鋁鎵之能帶特性 ……….….…..…….….…. 40
3.2.1理想未受應力時之特性 ………………….. 40
3.2.2受應力壓縮或伸長時之特性 …………….. 44
3.3氮化鋁銦之能帶特性 ……….….…..…….….…. 47
3.3.1理想未受應力時之特性 ………………….. 48
3.3.2受應力壓縮或伸長時之特性 …………….. 54
參考文獻 ……………………………………………………………….. 57
第四章 Zinc-blende結構之氮化鋁鎵銦能帶特性 ………… 64
4.1氮化銦鎵之能帶特性 ……….….…..…….….…. 64
4.1.1理想未受應力時之特性 ………………….. 64
4.1.2受應力壓縮或伸長時之特性 …………….. 70
4.2氮化鋁鎵之能帶特性 ……….….…..…….….…. 73
4.2.1理想未受應力時之特性 ………………….. 73
4.2.2受應力壓縮或伸長時之特性 …………….. 77
4.3氮化鋁銦之能帶特性 ……….….…..…….….…. 80
4.3.1理想未受應力時之特性 ………………….. 81
4.3.2受應力壓縮或伸長時之特性 …………….. 86
參考文獻 ……………………………………………………………….. 90
第五章 Zinc-blende結構之三元氮化硼鋁鎵銦能帶特性 …… 95
5.1氮化硼鋁之能帶特性 ……….….…..…….….…. 95
5.1.1理想未受應力時之特性 ………………….. 97
5.1.2受應力壓縮或伸長時之特性 …………….. 100
5.2氮化硼鎵之能帶特性 ……….….…..…….….…. 104
5.2.1理想未受應力時之特性 ………………….. 104
5.2.2受應力壓縮或伸長時之特性 …………….. 106
5.3氮化硼銦之能帶特性 ……….….…..…….….…. 109
5.3.1理想未受應力時之特性 ………………….. 109
5.3.2受應力壓縮或伸長時之特性 …………….. 112
參考文獻 …………………………………………………………….... 118
第六章 結論 ……………………………………………………121
附錄一 CASTEP軟體使用入門 ……..…….……..………..…… I
附錄二 已發表之期刊論文 …..…………………………………….. VIII
第一章
[1] 余樹楨 著, “晶體之結構與性質”, 渤海堂文化事業有限公司出版, 1987年12月初版。
[2] 郝士明 著, “漫談晶體結構學…從材料學說起…”, 國家圖書館出版, 1997年12月初版。
[3] 曾國輝 編著, “化學-上冊”, 藝軒圖書出版社, 1988年7月第七版。
第二章
[1] J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) I - Semiconductors and Semimetals Volume 50, Academic Press, San Diego, California, USA, (1998).
[2] D. Jones and A. H. Lettington, Solid State Commun. 11 (1969) 701.
[3] S. Bloom, J. Phys. Chem. Sol. 32 (1971) 2027.
[4] S. Bloom, G. Harbeke, E. Meier and I. B. Ortenburger, Phys. Stat. Sol. B 66 (1974) 161.
[5] J. Bourne and R. L. Jacobs, J. Phys. C: Solid State Physics 5 (1972) 3462.
[6] B. Hejda and K. Hauptmanova, Phys. Status Solidi 36 (1969) K95.
[7] V. A. Tyagai, A. M. Evtigneev, A. N. Krasiko, A. F. Andreeva and V. Ya. Malkov, Sov. Phys. Semicond. 11 (1977) 1257.
[8] L. Hedin and S. Lundqvist, In Solid State Physics 23 (1969) 1.
第三章
[1] W. J. Tropf and M. E. Thomas, in Handbook of Optical Constants of Solids Ⅲ, edited by E. D. Palik, Academic, New York (1998) 653-682.
[2] T. Mukai, H. Narimatsu and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures”, Jpn. J. Appl. Phys. 37 (1998) L479-L481.
[3] T. Mukai, M. Yamada and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes”, Jpn. J. Appl. Phys. 38 (1999) 3976-3981.
[4] T. F. Huang and J. S. Harris, Jr., “Growth of epitaxial AlxGa1-xN films by pulsed laser deposition”, Appl. Phys. Lett. 72 (1998) 1158-1160.
[5] A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN”, Phys. Rev. B 51 (1995) 7866-7869.
[6] S. Nakamura and G. Fasol, The Blue Laser Diode — GaN based Light Emitters and Lasers, Springer-Verlag, Heidelberg (1997).
[7] K. Osamura, S. Naka and Y. Murakami, “Preparation and optical properties of Ga1-xInxN thin films”, J. Appl. Phys. 46 (1975) 3432-3437.
[8] Y. K. Kuo, W. W. Lin and J. Lin, “Band-Gap bowing parameter of the InxGa1-xN derived from theoretical simulation”, Jpn. J. Appl. Phys. 40 (2001) 3157-3158.
[9] W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman and R. A. Stall, “Optical properties of InxGa1-xN alloys grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 84 (1998) 4452-4458.
[10] H. P. D. Schenk, P. de Mierry, M. Laugt, F. Omnes, M. Leroux, B. Beaumont and P. Gibart, “Indium incorporation above 8000C during metalorganic vapor phase epitaxy of InGaN”, Appl. Phys. Lett. 75 (1999) 2587-2589.
[11] J. Wagner, A. Ramakrishnan, D. Behr, M. Maier, N. Herres, M. Kunzer, H. Obloh and K. —H. Bachem, “Composition dependence of the band gap energy of InxGa1-xN layers on GaN (x≤0.15) grown by metal-organic chemical vapor deposition”, MRS Internet J. Nitride Semicond. Res. 4s1 (1999) G2.8.
[12] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano and I. Akasaki, “Optical properties of strained AlGaN and GaInN on GaN”, Jpn. J. Appl. Phys. 36 (1997) L177-L179.
[13] M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano and N. M. Johnson, “Large band gap bowing of InxGa1-xN alloys”, Appl. Phys. Lett. 72 (1998) 2725-2726.
[14] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano and I. Akasaki, “Optical band gap in Ga1-xInxN (0[15] L. T. Romano, B. S. Krusor, M. D. McCluskey, D. P. Bour and K. Nauka, “Structural and optical properties of pseudomorphic InxGa1-xN alloys”, Appl. Phys. Lett. 73 (1998) 1757-1759.
[16] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei and A. Zunger, “Resonant hole localization and anomalous optical bowing in InGaN alloys”, Appl. Phys. Lett. 74 (1999) 1842-1844.
[17] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. El-Masry and L. H. Robins, “Optical band gap dependence on composition and thickness of InxGa1-xN (0[18] C. Wetzel, S. Nitta, T. Takeuchi, S. Yamaguchi, H. Amano and I. Akasaki, “On the bandstructure in GaInN/GaN heterostructures strain, band gap and piezoelectric effect”, MRS Internet J. Nitride Semicond. Res. 3 (1998) 31.
[19] S. K. Pugh, D. J. Dugdale, S. Brand and R. A. Abram, “Band-gap and k.p. parameters for GaAlN and GaInN alloys”, J. Appl. Phys. 86 (1999) 3768-3772.
[20] Y. C. Yeo, T. C. Chong and M. F. Li, “Electronic band structures and effective-mass parameters of wurtzite GaN and InN”, J. Appl. Phys. 83 (1998) 1429-1436.
[21] A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley and S. G. Louie, “Quasiparticle band structure of AlN and GaN”, Phys. Rev. B 48 (1993) 11810-11816.
[22] M. Suzuki, T. Uenoyama and A. Yanase, “First-principles calculations of effective-mass parameters of AlN and GaN”, Phys. Rev. B 52 (1995) 8132-8139.
[23] S. R. Lee, A. F. Wright, M. H. Crawford, G. A. Petersen, J. Han and R. M. Biefeld, “The band-gap bowing of AlxGa1-xN alloys”, Appl. Phys. Lett. 74 (1999) 3344-3346.
[24] A. F. Wright and J. S. Nelson, “Bowing parameters for zinc-blende Al1-xGaxN and Ga1-xInxN”, Appl. Phys. Lett. 66 (1995) 3051-3053.
[25] G. Steude, B. K. Meyer, A. Goldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano and I. Akasaki, “Optical investigations of AlGaN on GaN epitaxial films”, Appl. Phys. Lett. 74 (1999) 2456-2458.
[26] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, “Energy band-gap bowing parameter in an AlxGa1-xN alloy”, J. Appl. Phys. 61 (1987) 4540-4543.
[27] H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch and H.-J. Korner, “Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1-xN films”, Appl. Phys. Lett. 71 (1997) 1504-1506.
[28] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher and M. Stutzmann, “Optical constants of epitaxial AlGaN and their temperature dependence”, J. Appl. Phys. 82 (1997) 5090-5096.
[29] J. Hagen, R. D. Metcalfe, D. Wickenden and W. Clark, J. Phys. C 11 (1978) L143.
[30] M. D. Bremser, W. G. Perry, T. Zheleva, N. V. Edwards, O. H. Nam, N. Parikh, D. E. Aspnes and R. F. Davis, “Growth, Doping and Characterization of AlxGa1-xN Thin Film Alloys on 6H-SiC(0001) Substrates”, MRS Internet J. Nitride Semicond. Res. 1 (1996) 8.
[31] V. G. Deibuk, A. V. Voznyi and M. M. Sletov, Sov. Phys. Semicond. 34 (2000) 35.
[32] G. Steude, D. M. Hofmann, B. K. Meyer, H. Amano and I. Akasaki, “The dependence of the band gap on alloy composition in strained AlGaN on GaN”, Phys. Status Solidi B 205 (1998) R7.
[33] S. Yoshida, S. Misawa and S. Gonda, “Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy”, J. Appl. Phys. 53 (1982) 6844-6848.
[34] T. J. Ochalski, B. Gil, P. Lefebvre, N. Grandjean, M. Leroux, J. Massies, S. Nakamura and H. Morkoc, “Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN”, Appl. Phys. Lett. 74 (1999) 3353-3355.
[35] L. —C. Duda, C. B. Stagarescu, J. Downes, K. E. Smith, D. Korakakis, T. D. Moustakas, J. Guo and J. Nordgren, “Density of states, hybridization and band-gap evolution in AlxGa1-xN alloys”, Phys. Rev. B 58 (1998) 1928-1933.
[36] D. K. Wickenden, C. B. Bargeron, W. A. Bryden, J. Miragliotta and T. J. Kistenmacher, “High quality self-nucleated AlxGa1-xN layers on (00.1) sapphire by low-pressure metalorganic chemical vapor depotition”, Appl. Phys. Lett. 65 (1994) 2024-2026.
[37] Y. K. Kuo and W. W. Lin, “Band-Gap Bowing Parameter of the AlxGa1-xN Derived From Theoretical Simulation”, Jpn. J. Appl. Phys. 41 (2002) 73-74.
[38] K. Starosta, Phys. Status Solidi A vol. 68 (1981) K55.
[39] K. Kubota, Y. Kobayashi and K. Fujimoto, “Preparation and properties of III-V nitride thin films”, J. Appl. Phys. 66 (1989) 2984-2988.
[40] T. Peng, J. Piprek, G. Qiu, J. O. Olowolafe, K. M. Unruh, C. P. Swann and E. F. Schubert, “Band gap bowing and refractive index spectra of polycrystalline AlxIn1-xN films deposited by sputtering”, Appl. Phys. Lett. 71 (1997) 2439-2441.
[41] M. van Schilfgaarde, A. Sher and A. -B. Chen, “Theory of AlN, GaN, InN and their alloys”, J. Cryst. Growth 178 (1997) 8.
[42] K. Kim, Ph.D. thesis, Case Western Reserve University, (1998).
[43] M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, “Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1-xN, InxGa1-xN and InxAl1-xN”, J. Appl. Phys. 88 (2000) 6476-6482.
[44] A. F. Wright and J. S. Nelson, “First-principles calculations for zinc-blende AlInN alloys”, Appl. Phys. Lett. 66 (1995) 3465-3467.
[45] K. S. Kim, A. Saxler, P. Kung, M. Razeghi and K. Y. Lim, “Determination of the band-gap energy of Al1-xInxN grown by metal-organic chemical-vapor deposition”, Appl. Phys. Lett. 71 (1997) 800-802.
[46] M. J. Lukitsch, Y. V. Danylyuk, V. M. Naik, C. Huang, G. W. Auner, L. Rimai and R. Naik, “Optical and electrical properties of Al1-xInxN films grown by plasma source molecular-beam epitaxy”, Appl. Phys. Lett. 79 (2001) 632-634.
[47] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, “Observation of photoluminescence from Al1-xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 73 (1998) 830-831.
[48] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, “Anomalous features in the optical properties of Al1-xInxN on GaN grown by metal organic vapor phase epitaxy”, Appl. Phys. Lett. 76 (2000) 876-878.
[49] Q. Guo, H. Ogawa and A. Yoshida, “Growth of AlxIn1-xN single crystal films by microwave-excited metalorganic vapor phase epitaxy”, J. Cryst. Growth 146 (1995) 462-466.
第四章
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett. 72 (1998) 2014-2016.
[2] S. H. Park and S. L. Chuang, “Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effect”, J. Appl. Phys. 87 (2000) 353-364.
[3] T. F. Huang and J. S. Harris, Jr., “Growth of epitaxial AlxGa1-xN films by pulsed laser deposition”, Appl. Phys. Lett. 72 (1998) 1158-1160.
[4] A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN”, Phys. Rev. B 51 (1995) 7866-7869.
[5] A. F. Wright and J. S. Nelson, “Bowing parameters for zinc-blende Al1-xGaxN and Ga1-xInxN”, Appl. Phys. Lett. 66 (1995) 3051-3053.
[6] K. Osamura, S. Naka and Y. Murakami, “Preparation and optical properties of Ga1-xInxN thin films”, J. Appl. Phys. 46 (1975) 3432-3437.
[7] T. Nagatomo, T. Kuboyama, H. Minamino and O. Omoto, Jpn. J. Appl. Phys. 28 (1989) L1334.
[8] N. Yoshimoto, T. Matsuoka and A. Katsui, “Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 59 (1991) 2251-2253.
[9] W. Li, P. Bergman, I. Ivanov, W.-X. Ni, H. Amano and I. Akasa, “High-resolution x-ray analysis of InGaN/GaN superlattices grown on sapphire substrates with GaN layers”, Appl. Phys. Lett. 69 (1996) 3390-3392.
[10] R. Goldhahn, J. Scheiner, S. Shokhovets, T. Frey, U. Kohler, D. J. As and K. Lischka, “Refractive index and gap energy of cubic InxGa1-xN”, Appl. Phys. Lett. 76 (2000) 291-293.
[11] T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano and I. Akasaki, “Optical properties of strained AlGaN and GaInN on GaN”, Jpn. J. Appl. Phys. 36 (1997) L177-L179.
[12] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano and I. Akasaki, “Optical band gap in Ga1-xInxN (0[13] C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu and N. A. El-Masry, L. H. Robins, “Optical band gap dependence on composition and thickness of InxGa1-xN (0[14] H. P. D. Schenk, P. de Mierry, M. Laugt, F. Omnes, M. Leroux, B. Beaumont and P. Gibart, “Indium incorporation above 8000C during metalorganic vapor phase epitaxy of InGaN”, Appl. Phys. Lett. 75 (1999) 2587-2589.
[15] M. E. Aumer, S. F. LeBoeuf, F. G. McIntosh and S. M. Bedair, “High optical quality AlInGaN by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 75 (1999) 3315-3317.
[16] J.-Chr. Holst, A. Hoffmann, D. Rudloff, F. Bertram, T. Riemann, J. Christen, T. Frey, D. J. As, D. Schikora and K. Lischka, “The origin of optical gain in cubic InGaN grown by molecular beam epitaxy”, Appl. Phys. Lett. 76 (2000) 2832-2834.
[17] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys”, J. Appl. Phys. 89 (2001) 5815-5875.
[18] S. F. Chichibu, M. Sugiyama, T. Kuroda, A. Tackeuchi, T kitamura, H. Nakanishi, T. Sota, S. P. DenBaars, S. Nakamura, Y Ishida and H. Okumura, “Band gap bowing and exciton localization in strained cubic InxGa1-xN films grown on 3C-SiC (001) by rf molecular-beam epitaxy”, Appl. Phys. Lett. 79 (2001) 3600-3602.
[19] A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN”, J. Appl. Phys. 82 (1997) 2833-2839.
[20] K. Shimada, T. Sota, K. Suzuki and H. Okumura, “First principles study on electronic and elastic properties of BN, AlN, and GaN”, Jpn. J. Appl. Phys. 37 (1998) L1421-L1423.
[21] A. Nakadaira and H. Tanaka, “Metalorganic vapor-phase epitaxy of cubic AlxGa1-xN alloy on a GaAs (100) substrate”, Appl. Phys. Lett. 70 (1997) 2720-2722.
[22] M. A. Khan, R. A. Skogman, R. G. Schulze and M. Gershenzon, “Properties and ion implantation of AlxGa1-xN epitaxial single crystal films prepared by low pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. 43 (1983) 492-494.
[23] M. R. H. Khan, Y. Koide, H. Itoh, N. Sawaki and I. Akasaki, “???”, Solid State Commun. 60 (1986) 509.
[24] Y. Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki and I. Akasaki, “Energy band-gap bowing parameter in an AlxGa1-xN alloy”, J Appl. Phys. 61 (1987) 4540-4543.
[25] W. J. Fan, M. F. Li, T. C. Chong and J. B. Xia, “Electronic properties of zinc-blende GaN, AlN, and their alloys Ga1-xAlxN”, J. Appl. Phys. 79 (1996) 188-194.
[26] E. A. Albanesi, W. R. L. Lambrecht and B. Segall, “Electronic structure and equilibrium properties of GaxAl1-xN alloys”, Phys. Rev. B 48 (1993) 17841-17847.
[27] S. K. Pugh, D. J. Dugdale, S. Brand and R. A. Abram, “Band-gap and k.p. parameters for GaAlN and GaInN alloys”, J. Appl. Phys. 86 (1999) 3768-3772.
[28] Z. Sitar, M. J. Paisley, J. Ruan, J. W. Choyke and R. F. Davis, “???”, J. Mater. Sci. Lett. 11 (1992) 261.
[29] H. Okumura, S. Yoshida and T. Okahisa, “Optical properties near the band gap on hexagonal and cubic GaN”, Appl. Phys. Lett. 64 (1994) 2997-2999.
[30] G. Ramirez-Flores, H. Navarro-Contreras, A. Lastras-Martinez, R. C. Powell and J. E. Greene, “Temperature-dependent optical band gap of the metastable zinc-blende structure β-GaN”, Phys. Rev. B 50 (1994) 8433-8438.
[31] N. E. Christensen and I. Gorczyca, “Optical and structural properties of III-V nitrides under pressure”, Phys. Rev. B 50 (1994) 4397-4415.
[32] S. Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki, “Observation of photoluminescence from Al1-xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 73 (1998) 830-831.
[33] T. Peng, J. Piprek, G. Qiu, J. O. Olowolafe, K. M. Unruh, C. P. Swann and E. F. Schubert, “Band gap bowing and refractive index spectra of polycrystalline AlxIn1-xN films deposited by sputtering”, Appl. Phys. Lett. 71 (1997) 2439-2441.
[34] A. F. Wright and J. S. Nelson, “First-principles calculations for zinc-blende AlInN alloys”, Appl. Phys. Lett. 66 (1995) 3465-3467.
[35] S. Stepanov, W. N. Wang, B. S. Yavich, V. Bougrov, Y. T. Rebane and Y. G. Shreter, “Influence of Poisson’s ratio uncertainty on calculation of the bowing parameter for strained InGaN layer”, MRS Internet J. Nitride Semicond. Res. 6 (2001) 6.
第五章
[1] L. K. Teles, L. M. R. Scolfaro, J. R. Leite, J. Furthmuller and F. Bechstedt, “Spinodal decomposition in BxGa1-xN and BxAl1-xN alloys”, Appl. Phys. Lett. 80 (2002) 1177-1179.
[2] D. G. Mcculloch, D. R. Mckenzie and C. M. Goringe, “Ab initiostudy of structure in boron nitride, aluminum nitride and mixed aluminum boron nitride amorphous alloys”, J. Appl. Phys. 88 (2000) 5028-5032.
[3] M. Lu, A. Bousetta, A. Bensaoula, K. Waters and J. A. Schultz, “Electrical properties of boron nitride thin films grown by neutralized nitrogen ion assisted vapor deposition”, Appl. Phys. Lett. 68 (1996) 622-624.
[4] N. Miyata, K. Moriki, O. Mishima, M. Fujisawa and T. Hattori, “Optical constants of cubic boron nitride”, Phys. Rev. B 40 (1989) 12028-12029.
[5] D. J. Kester and R. Messier, “Phase control of cubic boron nitride thin films”, J. Appl. Phys. 72 (1992) 504-513.
[6] M. Lu, A. Bousetta, R. Sukach, A. Bensaoula, K. Waters, K. Eipers-Smith and J. A. Schultz, “Growth of cubic boron nitride on Si(100) by neutralized nitrogen ion bombardment”, Appl. Phys. Lett. 64 (1994) 1514-1516.
[7] O. Mishima, J. Tanaka, S. Yamaoka and O. Fukunaga, “Ultraviolet light-emitting diode of a cubic boron nitride pn junction made at high pressure”, Appl. Phys. Lett. 53 (1988) 962-964.
[8] G. Chen, X. Zhang, B. Wang, X. song, B. Cui and H. Yan, “Optical absorption edge characteristics of cubic boron nitride thin films”, Appl. Phys. Lett. 75 (1999) 10-12.
[9] A. Y. Polyakov, M. Shin, W. Qian, M. Skowronski, D. W. Greve and R. G. Wilson, “Growth of AlBN solid solutions by organometallic vapor-phase epitaxy”, J. Appl. Phys. 81 (1997) 1715-1719.
[10] C. H. Wei, Z. Y. Xie, J. H. Edgar, K. C. Zeng, J. Y. Lin, H. X. Jiang, C. Ignatiev, J. Chaudhuri and D. N. Braski, “Growth and Characterization of BxGa1-xN on 6H-SiC (0001) by MOVPE”, MRS Internet J. Nitride Semicond. Res. 4S1 (1999) G3.79.
[11] M. Shibata, M. Kurimoto, J. Yamamoto, T. Honda and H. Kawanishi, “GaN/BAlN heterostructure grown on a (0001)6H—SiC substrate by metalorganic vapor phase epitaxy”, J. Cryst. Growth 189 (1998) 445-447.
[12] K. Shimada, T. Sota, K. Suzuki and H. Okumura, “First principles study on electronic and elastic properties of BN, AlN, and GaN”, Jpn. J. Appl. Phys. 37 (1998) L1421-L1423.
[13] T. Sugino and S. Tagawa, “Effect of oxygen plasma treatment on field emission characteristics of boron-nitride films”, Appl. Phys. Lett. 74 (1999) 889-891.
[14] T. Sugino and T. Tai, “Dielectric constant of boron nitride films synthesized by plasma-assisted chemical vapor deposition”, Jpn. J. Appl. Phys. 39 (2000) L1101-L1104.
[15] N. Miyata, K. Moriki, O. Mishima, M. Fujisawa and T. Hattori, “Optical constants of cubic boron nitride”, Phys. Rev. B 40 (1989) 12028-12029.
[16] Y. Hirayama and M. Obara, “Ablation characteristics of cubic-boron nitride ceramic with femtosecond and picosecond laser pulse”, J. Appl. Phys. 90 (2001) 6447-6450.
[17] R. C. Devries, In Diamond and Diamond-Like Films and Coatings, edited by R. E. Clausing, L. L. Horton, J. C. Angus and P. Koidl, Plenum, New York, (1991).
[18] C. Ronning, A. D. Banks, B. L. McCarson, R. Schlesser, Z. Sitar, R. F. Davis, B. L. Ward and R. J. Nemanich, “Structural and electronic properties of boron nitride thin films containing silicon”, J. Appl. Phys. 80 (1998) 5046-5051.
[19] T. Honda, M. Shibata, M. Kurimoto, M. Tsubamoto, J. Yamamoto and H. Kawanishi, “Band-gap energy and effective mass of BGaN”, Jpn. J. Appl. Phys. 39 (2000) 2389-2393.
[20] M.-H. Tsai, S. Lee, F. C. Peiris and J. K. Furdyna, “Electronic and Structural properties of ZnSe1-xTex alloys and sinusoidally modulated Zn Se1-xTex superlattices”, 2002年彰化師大物理研究所演講稿。
[21] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B 13 (1976) 5188-5192.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top