跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張誌原
研究生(外文):Jih-Yuan Chang
論文名稱:氮化銦鎵量子井雷射之電子溢流現象與電洞不均勻性探討
論文名稱(外文):Electronic Current Overflow and Inhomogeneous Hole Distribution of the InGaN Quantum Well Structures
指導教授:郭艷光
指導教授(外文):Yen-Kuang Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:氮化銦鎵量子井結構電子溢流電洞分佈不均勻
外文關鍵詞:InGaNQuantum Well StructureElectronic Current OverflowInhomogeneous Hole Distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要在探討氮化銦鎵藍光雷射之電子溢流效應與活性區的電洞分佈不均勻現象。在文章的一開始首先簡介氮化銦鎵相關系統的材料特性及其發展歷程,並對此一材料發展過程中所遭遇過的已解決以及尚未解決的重大問題作一些概略性的說明。
在文章的主體部分,我利用模擬軟體Lastip來探討氮化銦鎵單一量子井雷射與多量子井雷射之各項光學特性與雷射效應,並將研究重點放在電子溢流與電洞分佈不均勻現象對發光效率的影響,及其可能的解決方法。由於氮化銦鎵異質接面之導電帶能隙補償差較小,再加上電洞之有效質量較大,因此可以預期其電子溢流現象應該相當嚴重,模擬結果證實了此項推論。此外,過大的有效質量也會進一步影響電洞的移動速率,並造成各量子井間不均勻的電洞濃度分佈,嚴重地影響元件的效能,尤其是多量子井元件。
為了改善電子溢流的現象,我試著去增加p態薄膜的摻雜濃度以及在活性區之上使用氮化鋁鎵阻礙層,結果成功地抑制溢電流的產生,並大幅地提升系統的效能及其對溫度的穩定性。此外,經由對活性層旁的披覆層進行適度的p態摻雜,也有效地改善了活性區內的電洞不均勻現象,並且同樣的造成系統效能的大幅提升。

In this thesis, I mainly study the effect of electronic current overflow and the phenomenon of inhomogeneous hole distribution in active region of InGaN blue laser diodes. First of all, I briefly introduce the material characteristics and the development history of the InGaN semiconductor materials. A brief overview of the solved and unsolved problems related to the InGaN materials is also provided.
For the main portion of this thesis, I use the LASTIP simulation software to explore the optical properties and the laser effects of the InGaN single quantum well and multi-quantum well lasers. Special attention is paid to the effects of electronic current overflow and inhomogeneous hole distribution on light emitting efficiency and the possible solutions of its related problems. Because of the small conduction band-offset of the InGaN heterojunction and the large hole effective mass, according to the theory, there must exist series electronic current overflow. My simulation results justify this theoretical expectation. In addition, a large hole effective mass can further affect the hole mobility, and thus causes the inhomogeneous hole distribution among the quantum wells. As a result, this effect will seriously deteriorate the performance of the devices, especially for the multi-quantum well lasers.
In order to improve the overflow phenomenon, the increase of the p-doping concentration and the use of an AlGaN blocking layer beside the active region have been attempted. Simulation results show that these two methods can effectively restrain the overflow current. In the mean time, it can greatly enhance the performance of the laser device and the stability with respective to the temperature. Furthermore, simulations results also suggest that p-doping of the barriers beside the quantum wells can help improve the phenomenon of the inhomogeneous hole distribution and enhance the system efficiency.

目錄 ……………………………………………………………………… iv
中文摘要 ………………………………………………………………… ix
英文摘要 ………………………………………………………………… x
圖表索引 ………………………………………………………………… xii
第一章 緒論 …………………………………………………………… 1
1.1 藍、綠光發光元件簡介 …………………………………………… 2
1.1.1 砷化鋁鎵系統與磷化鋁鎵銦系統 …………………………… 3
1.1.2 磷化鎵系統 …………………………………………………… 3
1.1.3 硒化鋅系統 …………………………………………………… 4
1.1.4 碳化矽系統 …………………………………………………… 4
1.1.5 III-V族氮化物系統 ………………………………………… 4
1.2 氮化銦鎵發光元件簡介 …………………………………………… 6
第二章 III-V族氮化物系統之材料特性簡介 ……………………… 10
2.1基板 ………………………………………………………………… 10
2.1.1 藍寶石基板 …………………………………………………… 11
2.1.2 碳化矽基板 …………………………………………………… 11
2.1.3 ELOG基板 ……………………………………………………… 12
2.1.4 其他可用的基板 ……………………………………………… 13
2.2 能帶間隙 …………………………………………………………… 14
2.3 能隙補償差 ………………………………………………………… 19
2.4 載子有效質量 ……………………………………………………… 23
2.5 晶格常數 …………………………………………………………… 25
2.6 磊晶法 ……………………………………………………………… 26
第三章 氮化銦鎵單一量子井雷射之電子溢流現象 ………………… 29
3.1 造成電子溢流的原因 ……………………………………………… 30
3.1.1 原因一:臨界電流值較高 …………………………………… 30
3.1.2 原因二:量子井寬度較窄 …………………………………… 31
3.1.3 原因三:電洞不容易傳輸至活性區中 ……………………… 31
3.1.4 原因四:導電帶的能隙補償差較低 ………………………… 32
3.2 模擬結構與參數設定 ……………………………………………… 33
3.3 模擬結果與分析 …………………………………………………… 34
3.3.1 氮化銦鎵單一量子井雷射之電子溢流現象 ………………… 34
3.3.2 改善方法一:提升p態摻雜濃度 …………………………… 37
3.3.3 改善方法二:使用p態阻礙層 ……………………………… 41
3.3.4 較佳結構設計:同時使用方法一與方法二 ………………… 46
3.3.5 較佳結構與初始結構之比較 ………………………………… 50
3.4 結論 ………………………………………………………………… 52
第四章 氮化銦鎵量子井雷射之電洞不均勻現象…………………… 54
4.1 前言 ………………………………………………………………… 54
4.2 模擬結構與參數設定 ……………………………………………… 56
4.3 模擬結果與分析 …………………………………………………… 56
4.3.1 量子井個數與雷射性能之關係 ……………………………… 56
4.3.2 各量子井間的電洞分佈不均勻現象 ………………………… 58
4.3.3 活性區的吸收效應 …………………………………………… 61
4.3.4 披覆層p態摻雜 ……………………………………………… 64
4.4 結論 ………………………………………………………………… 70
第五章 結論 …………………………………………………………… 71
參考文獻 ………………………………………………………………… 73
附錄A 模擬軟體(LASTIP)之使用說明 …………………………… I
A.1 材料系統與參數設定 ……………………………………………… I
A.2 程式所能模擬的系統、結構 ……………………………………… II
A.3 理論計算與原理 …………………………………………………… II
A.4 模擬所能獲得的結果與資料……………………………………… III
A.5 主要操作程序與流程 ……………………………………………… IV
A.5.1 步驟一:建立.layer檔 ……………………………………… VI
A.5.1.1 直接撰寫.layer檔 ………………………………………… VI
A.5.1.2 圖形操作介面 …………………………………………… VIII
A.5.2 步驟二:Process .layer file …………………………… VIII
A.5.3 步驟三:Generate Mesh …………………………………… IX
A.5.4 步驟四:Setup .sol file ………………………………… IX
A.5.5 步驟五:Start the simulation …………………………… XI
A.5.6 步驟六:Setup .plt file ………………………………… XI
A.5.7 步驟七:View results ……………………………………… XI
附錄B 模擬中所使用的完整程式內容 ……………………………… XII
B.1 .layer檔 ………………………………………………………… XII
B.2 .gain檔 …………………………………………………………… XIII
B.3 .sol檔 …………………………………………………………… XIV
B.4 .plt檔 …………………………………………………………… XIV
附錄C 論文發表清單 ……………………………………………… XVII
C.1 SCI認定英文雜誌論文:5篇 …………………………………… XVII
C.2 中文雜誌論文:3篇 …………………………………………… XVIII
C.3 研討會論文:15篇 ……………………………………………… XVIII

S. Nakamura, and G. Fasol, The Blue Laser Diode, Springer-Verlag, Heidelberg, 1997.
[2] J. I. Pankove, and T. D. Moustakas, Gallium Nitride (GaN) I - Semiconductors and Semimetals Volume 50, Academic Press, San Diego, California, USA, 1998.
[3] G. B. Stringfellow, and M. G. Craford, High Brightness Light Emitting Diodes: Semiconductors and Semimetals Volume 48, Academic Press, San Diego, California, USA, 1997.
[4] S. C Jain, M. Willander, and R. V. Overstraeten, "III-nitrides: Growth, characterization, and properties," J. Appl. Phys, 87, 965, 2000.
[5] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, and T. Mukai, "InGaN/GaN/AlGaN-based LEDs and laser diodes," MRS Internet J. Nitride Semicond. Res. 3, 31, 1999.
[6] S. Nakamura, M. Senoh, S. Nagahama, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and T. Mukai, "Violet InGaN/GaN/AlGaN-Based laser diodes operable at 50°C with a fundamental transverse mode," J. Appl. Phys, 38, L226, 1999.
[7] H. Morkoc, S. Strite, G. B Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies," J. Appl. Phys, 76, 1363, 1994.
[8] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," Physica 34, 149, 1967.
[9] H. Teisseyre, P. Perlin, T. Suski, I. Grzegory, S. Porowski, J. Jun, A. Pietraszko, and T. D. Moustakas, "Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer," J. Appl. Phys, 76, 2429, 1994.
[10] M. O. Manasreh, "Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition," Phys. Rev. B, 53, 16425, 1996.
[11] B. Monemear, "Fundamental energy gap of GaN from photoluminescence excitation spectra," Phys. Rev. B, 10, 676, 1974.
[12] J. Petalas, S. Logothetidis, and S. Boultadakis, M. Alouani, and J. M. Wills, "Optical and electronic-structure study of cubic and hexagonal GaN thin films," Phys. Rev. B, 52, 8082, 1995.
[13] Q. Guo, and A. Yoshida, "Temperature dependence of band gap change in InN and AlN," J. Appl. Phys, 33, 2453, 1994.
[14] P. Lautenschlager, M. Garriga, and M. Cardona, "Temperature dependence of the interband critical-point parameters of InP," Phys. Rev. B, 36, 4813, 1974.
[15] A. F. Wright, and J. S. Nelson, "Bowing parameters for zinc-blende Al1-xGaxN and Ga1-xInxN," Appl. Phys. Lett. 66, 3051, 1995.
[16] W. Shan, W. Walukiewicz, E. E. Haller, B. D. Little, J. J. Song, M. D. McCluskey, N. M. Johnson, Z. C. Feng, M. Schurman, and R. A. Stall, "Optical properties of InxGa1-xN alloys grown by metalorganic chemical vapor depositioon," J. Appl. Phys. 84, 4452, 1998.
[17] M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano, and N. M. Johnson, "Large band gap bowing of InxGa1-xN alloys," Appl. Phys. Lett. 72, 2725, 1998.
[18] L. T. Romano, B. S. Krusor, M. D. McCluskey, D. P. Bour, and K. Nauka, "Structural and optical properties of pseudomorphic InxGa1-xN alloys," Appl. Phys. Lett. 73, 1757, 1998.
[19] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, "Optical band gap in Ga1-xInxN (0﹤x﹤0.2) on GaN by photoreflection spectroscopy," Appl. Phys. Lett. 73, 1994, 1998.
[20] H. P. D. Schenk, P. de Mierry, M. Laugt, F. Omnes, M. Leroux, B. Beaumont, and P. Gibart, "Indium incorporation above 8000C during metalorganic vapor phase epitaxy of InGaN," Appl. Phys. Lett. 75, 2587, 1999.
[21] J. Wagner, A. Ramakrishnan, D. Behr, M. Maier, N. Herres, M. Kunzer, H. Obloh, and K.-H. Bachem, "Composition dependence of the band gap energy of InxGa1-xN layers on GaN (x≦0.15) grown by metal-organic chemical vapor deposition," MRS Internet J. Nitride Semicond. Res. 4s1, G2.8, 1999.
[22] L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, and A. Zunger, "Resonant hole localization and anomalous optical bowing in InGaN alloys," Appl. Phys. Lett. 74, 1842, 1999.
[23] C. A. Parker, J. C. Robert, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. El-Masry, and L. H. Robins, "Optical band gap dependence on composition and thickness of InxGa1-xN (0﹤x﹤0.25) grown on GaN," Appl. Phys. Lett. 75, 2566, 1999.
[24] G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoc, W. R. L. Lambrecht, and B. Segall, "Valence-band discontinuity between GaN and AIN measured by x-ray photoemission spectroscopy," Appl. Phys. Lett. 65, 610, 1994.
[25] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, "Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy," Appl. Phys. Lett. 68, 2541, 1996.
[26] J. Baur, K. Maier, M. Kunzer, U. Kaufmann, and J. Schneider, "Determination of the GaN/AlN band offset via the (-/0) acceptor level of iron," Appl. Phys. Lett. 65, 2211, 1994.
[27] J. R. Waldrop, and R. W. Grant, "Measurement of AlN/GaN (0001) heterojunction band offsets by x-ray photoemission spectroscopy," Appl. Phys. Lett. 68, 2879, 1996.
[28] S.-H. Wei, and A. Zunger, "Valence band splittings and band offsets of AlN, GaN, and InN," Appl. Phys. Lett. 69, 2719, 1996.
[29] S.-H. Wei, and A. Zunger, "Calculated natural band offsets of all II—VI and III—V semiconductors: Chemical trends and the role of cation d orbitals," Appl. Phys. Lett. 72, 2011, 1998.
[30] M. Suzuki, and T. Uenoyama, "Optical gain and crystal symmetry in III—V nitride lasers," Appl. Phys. Lett. 69, 3378, 1996.
[31] A. S. Barker, Jr. and M. Ilegems, "Infrared lattice vibrations and free-electron dispersion in GaN," Phys. Rev. B, 7, 743, 1973.
[32] M. Suzuki, and T. Uenoyama, "First-principles calculation of effective mass parameters of gallium nitride," Jpn. J. Appl. Phys. 34, 3442, 1995.
[33] Y. C. Yeo, T. C. Chong, and M. F. Li, "Electronic band structures and effective-mass parameters of wurtzite GaN and InN," J. Appl. Phys. 83, 1429, 1998.
[34] C. P. Foley, and T. L. Tansley, "Pseudopotential band structure of indium nitride," Phys. Rev. B, 33, 1430, 1986.
[35] J. I. Pankove and T. D. Moustakas, Gallium Nitride (GaN) II - Semiconductors and Semimetals Volume 57, Academic Press, San Diego, California, USA, 1999.
[36] J. A. Majewski, M. Stadele, and P. Vogl, "Electronic structure of biaxially strained wurtzite crystals GaN, AlN, and InN," MRS Internet J. Nitride Semicond. Res. 1, 30, 1999.
[37] J. H. Edgar, Properties of Group III Nitrides, Electronic Materials Information Service, London, 1994.
[38] K. Shimada, T. Sota, and K. Suzuki, "First-principles study on electronic and elastic properties of BN, AlN, and GaN," J. Appl. Phys. 84, 4951, 1998.
[39] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies," J. Appl. Phys. 76, 1363, 1994.
[40] K. Kim, W. R. L. Lambrecht, and B. Segall, "Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN," Phys. Rev. B, 53, 16310, 1996.
[41] A. F. Wright, and J. S. Nelson, "Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method," Phys. Rev. B, 50, 2159, 1994.
[42] D. Vogel, P. Kruger, and J. Pollmann, "Structural and electronic properties of group-III nitrides," Phys. Rev. B, 55, 12836, 1997.
[43] K. Miwa, and A. Fukumoto, "First-principle calculation of the structure, electronic, and vibration properties of gallium nitride and aluminum nitride," Phys. Rev. B, 48, 7897, 1993.
[44] S. Strite, and H. Morkoc, "GaN, AlN, and InN: A review," J. Vac. Sci. Technol. B, 10, 1237, 1992.
[45] K. Domen, R. Soejima, A. Kuramata, and T. Tanahashi, "Electron overflow to the AlGaN p-cladding layer in InGaN/GaN/AlGaN MQW laser diodes," MRS Internet J. Nitride Semicond. Res. 3, 2, 1998.
[46] K. Kumakura, T. Makimoto, and N Kobayashi, "Activation energy and electrical activity of Mg in Mg-doped InxGa1-xN (x < 0.2)," Jpn. J. Appl. Phys. 39, L337, 2000.
[47] T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, R. P. Schneider, Jr., C. Kocot, M. Blomqvist, Y. Chang, D. Lefforge, M. R. Krames, L. W. Cook, and S. A. Stockman, "GaN-based light emitting diodes with tunnel junctions," Jpn. J. Appl. Phys. 40, L861, 2001.
[48] S. Jeon, Y. Song, H. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, "Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions," Appl. Phys. Lett. 78, 3265, 2001.
[49] P. S. Zory, Jr, Quantum Well lasers, Academic Press, San Diego, California, USA, 1993.
[50] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, "InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates with a fundamental transverse mode," Jpn. J. Appl. Phys. 37, L1020, 1998.
[51] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai, "Blue InGaN-based laser diodes with an emission wavelength of 450 nm," Appl. Phys. Lett. 76, 22, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top