跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁一賢
研究生(外文):I-Hsine Ting
論文名稱:運用網頁探勘為基礎的個人化技術於網路廣告之探討
論文名稱(外文):A Study of Using Web Mining Based Personalization Technology on Web Advertising
指導教授:游耿能蕭如淵蕭如淵引用關係
指導教授(外文):Geeng-Neng YouJu-Yuan Hsiao
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:69
中文關鍵詞:網路廣告個人化網頁探勘使用者興趣程度
外文關鍵詞:Web AdvertisingPersonalizationWeb MiningUser Interestingness
相關次數:
  • 被引用被引用:21
  • 點閱點閱:1460
  • 評分評分:
  • 下載下載:429
  • 收藏至我的研究室書目清單書目收藏:5
隨著網際網路使用人口以及服務的日漸發展,以網路為基礎的網路廣告市場也日益擴大,然而對於網際網路這種尚在演化中的新興媒體,要如何利用網路廣告優於傳統廣告的特性來建立適當機制以及運作模式,讓網路廣告發揮更大的效果,可以說是一件非常重要的課題。
在本研究中,我們首先探討現行的網路廣告運作機制,並提出一個以網頁探勘與使用者興趣的衡量為基礎的個人化網路廣告模式,在本研究中亦提出三個擷取使用者興趣程度的建議計算方法。並利用叢聚的方法來探勘使用者的使用模型,且將每一個使用者分類至相關的叢聚,以傳遞適合其興趣的網路廣告。以此模式為基礎,本研究也發展了此模式的雛型系統並利用實際的使用者日誌資料進行實驗與測試,最後透過對結果的審視,評估與討論本研究所提出的使用者興趣程度萃取方法。經由此模式的建立,可以在不需要使用者參與的情況下擷取使用者的興趣程度,而這些資訊也可以用來作為提供個人化服務傳遞的依據。
在這種網路廣告模式的運作之下,對於使用者而言,使用者不必再花費時間提供或更新個人資料,也能得到依據其興趣所傳遞的個人化網路廣告,減低廣路廣告對其所造成的干擾,就廣告主而言,能夠針對其廣告訊息的特性配合使用者的興趣。而網路廣告業者,也能夠因為提升搭起廣告以及潛在客戶間橋樑的效率,增加廣告主刊登廣告的意願與收入,提升本身的競爭力。
With the continuing growth of the population of Internet users, the market of Internet-based web advertising is also rapidly expanding. Since the web advertising is still an evolving new media, it is an important issue for the advertisers to understand and take the advantage of the web advertising over the traditional ways of advertising. Thus the establishment of an appropriate mechanism and operation model is essential to achieve better advertising effectiveness.
In this research, we first explore the present web advertising operating mechanism. Then we propose a personalized web advertising model based on web mining and user interestingness measurement. Three computational approaches for the extraction of user interestingness are suggested. We also use the clustering method to mine web users’ usage pattern and categorize each user into a relevant cluster for the delivery of the user’s “interested” web advertisement. Based on this model, a prototype system was developed and several experiments were conducted using real web log data. Through the examination of the experimented results, we select evaluated the interestingness measurement method for this research. The user interestingness can be extracted without the user’s explicit participation. The extracted information can be utilized to deliver personalized web advertising services for each user. Under the web advertising operation model, all the three major participants of the web advertising will gain benefits respectively: the users receive personalized web advertisements unawarely; the advertisers target their intended audience; and the advertising vendors improve their performance in bridging the advertisers and the potential customers, and competitive advantage.
中文摘要  …………………………………………………………i
英文摘要  …………………………………………………………ii
誌謝辭  ……………………………………………………………iii
目錄  ………………………………………………………………iv
圖次  ………………………………………………………………vi
表次  ………………………………………………………………vii
第一章 緒論  ……………………………………………………1
 第一節 研究背景與動機  ……………………………………1
 第二節 研究目的  ……………………………………………4
 第三節 研究進行步驟 …………………………………………5
第四節 研究方法與預期成果 …………………………………7
第二章 文獻探討  ………………………………………………8
 第一節 網路廣告   …………………………………………8
 第二節 網路廣告的類型與播放策略 …………………………10
第三節 個人化與個人化網路廣告 ……………………………13
第四節 資料探勘與網頁探勘 …………………………………16
第三章 個人化網路廣告模式與雛型系統 …………………… 22
 第一節 以網頁探勘為基礎的個人化網路廣告模式 …………22
 第二節 雛型系統之架構與元件介紹 …………………………24
 第三節 雛型系統之系統流程 …………………………………28
第四章 使用者興趣程度探勘之技術與實作 ……………………31
 第一節 使用者日誌檔 …………………………………………31
第二節 資料預處裡 ……………………………………………34
第三節 使用者興趣程度衡量 ……………………………… 37
第四節 使用者叢聚 ………………………………………… 45
第五節 實作結果之評估與討論 …………………………… 54
第五章 結論與未來研究建議 ……………………………………62
第一節 結論與研究貢獻 ……………………………………62
第二節 未來研究建議 ………………………………………64
參考文獻  …………………………………………………………65
附錄   …………………………………………………………I
附錄一 本研究所使用的192個討論區列表 ……………………I
中文部分
[1]吳憲忠,陳宏泰(2001) ,利用模糊推論探討瀏覽行為的擷取與分析在網路廣告上的應用,NCS’01中華民國九十年全國電子計算機會議,文化大學,台灣。
[2]李明德(2000),網路廣告輪播系統之開發,國立中央大學機械工程研究所碩士論文。
[3]李維平(2000),使用資料探勘技術產生個人化廣告之研究,第二屆網站經營學術暨實務研討會,中原大學,台灣,頁101-110。
[4]徐釗欽(2000),Banner不只是Banner, WWW橫幅廣告內容分析,輔仁大學大眾傳播研究所碩士論文。
[5]許瓊文(1999),網際網路標題廣告設計上的變化對廣告效果之探,彰化師範大學商業教育研究所碩士論文。
[6]游耿能,許瓊文(2000),網際網路標題廣告設計上的變化對廣告效果之探討,TANET2000台灣區網際網路研討會,成功大學,台灣,頁576-582。
[7]甯怡翔(1999),以兩願行銷為基礎的網際網路廣告模式之探討 ,彰化師範大學商業教育研究所碩士論文。
[8]楊忠川,陳建儒,林福榮,林佳蓉,林美夆(2000),台灣網路族群對網路廣告態度之研究,TANET2000台灣區網際網路研討會,成功大學,台灣,592-599頁。
[9]楊忠川,宋美佳,吳秋燁,廖銀珠,洪慧怡(2000),購物網站廣告效果之研究,TANET2000台灣區網際網路研討會,成功大學,台灣,頁191-198。
[10]楊榮宗(1998),資料處理技術應用新風雲,育達學報,第12期,頁149-157。
[11]劉一賜(2001),網路廣告第一課,時報文化出版社,台北。
英文部分
[12]Baudisch, P., Leopold, D.(1997). “User-configurable advertising profile applied to Web page banners” Proceeding of the 1st Berlin Economics Workshop.
[13]Berthon, Pierre, Leyland, Pitt, Watson, Richard T.(1996).” The World Wide Web as an Advertising Medium, Toward an Understanding of Conversion Efficiency” Journal of Advertising Research, vol.2, pp.43-52.
[14]Brackett, Lana K., Carr, Benjamin N. JR.(2001) “Cyberspace Advertising vs. Other Media, Consumer vs. Mature Student Attitudes” Journal of Advertising Research, pp.23-33.
[15]Briggs, R., Hollins, N.(1997) “Advertising on the Web, Is There Response before Click-Through?” Journal of Advertising Research, pp.33-45.
[16]Bruner, JR. Gordon, C., Kumar, Anand(2000) “Web Commercials and Advertising Hierarchy-of-Effects” Journal of Advertising Research, pp.35-42.
[17]Buchner, A.G., Baumgarten, M., Mulvenna, M.D., Bohm, R., Anand, S.S.(2000) ”Data Mining and XML:Current and Future Issues” Proceedings of the First International Conference of Web Information Systems Engineering, pp.131 -135.
[18]Cooley, R.,Mobasher, B.,Srivastava, J.(1997) “Web Mining Information and Pattern Discovery on the World Wide Web” Proceedings of Ninth IEEE International Conference on Tools with Artificial Intelligence, pp.558-567.
[19]Cooley, R.,Mobasher, B.,Srivastava, J.(1997) “Grouping Web Page References into Transactions for Mining World Wide Web Browsing Patterns” Proceedings of Knowledge and Data Engineering Exchange Workshop, pp.2-9.
[20]Cooley, R.,Mobasher, B.,Srivastava, J.(1999)“Data Preparation for Mining World Wide Web Browsing Patterns” Journal of Knowledge and Information Systems, Vol.1, No1, pp.1-26.
[21]Dou, Wenyu, Linn, Randy, Yang, Sixian(2001) “How Smart Are Smart Banners?” Journal of Advertising Research, pp.31-43.
[22]Fu, Yongjlan (1997) “Data Mining: Tasks, techniques and applications” IEEE Potentials, pp.18-20.
[23]Garofalakis, Minos N.,Rastogi, Rajeev,Seshadri, S.,Shim, Kyuseok (1999)“Data Mining and the Web, Past, Present and Future” Proceedings of the second international workshop on web information and data management, pp.43-44.
[24]Han, Jiawei, Fu, Yongjian(1999)”Mining Multiple-level Association Rules in Large Database” IEEE Transactions on Knowledge and Data Engineering, Vol.11, No.5, pp.798-806.
[25]Han, Jiawei, Dong Guozhu, Yin, Yiwen (1999) “Efficient Mining of Partial Periodic Patterns in Time Series Database” Proceedings of the 15th International Conference on Data Engineering,Sydney, Austrialia, pp.106-115.
[26] Han, Jiawei, Kamber Micheline(2000)“Data Mining: Concepts and Techniques” Canada, Morgan Kaufmann Publishers.
[27]Hilderman, R.J., Hamilton, H.J.(2000) "Principles for Mining Summaries Using Objective Measures of Interestingness." Proceedings of the 12th IEEE International Conference on Tools with Artificial Intelligence, Vancouver, BC, pp.72-81.
[28]Hirsh, Haym, Basu, Chumki, Davison, Brian D(2000) “Learning to Personalize” Communication of ACM, Vol:43, No.8.
[29]Hui, S. C.,Jha, G.(2000)“Data mining for Customer Service Support” Information and Management, Vol.38, pp.1-13.
[30]Hollfelder, Silvia, Oria, Vincent, Ozsu, M. Tamer(2000) “Mining User Behavior for Resource Prediction in Interactive Electronic Malls” Proceedings of 2000 IEEE International Conference on Multimedia and Expo, Vol.2, pp.862-866.
[31]Jain, A.K.,Murty, M.N.,Flynn, P.J.(1999) ”Data Clustering ,A Review” ACM Computing Surveys, Vol.31, No.3, pp.264-323.
[32]Kosala, Raymond, Blockeel, Hendrik(2000)“Web Mining Research,A Survey” ACM SIGKDD Explorations Newsletter, Vol.2, Issue 1, pp.1-15.
[33]Kuo Y. F., Chen L. S.(2001) ”Personalization Technology Application to Internet Content Provider” Expert System with Application. Vol.21, pp.203-215.
[34]Kramer, Joseph, Noronha, Sunil, Vergo, John.(2000) ”A User-Centered Design Approach to Personalization” Communication of ACM, Vol:43, No.3, pp.45-48.
[35]Krishnapuram, Raghu,Joshi, Anupam,Nasraoui, Olfa,Yi, Liyu(2001) “Low-Complexity Fuzzy Relational Clustering Algorithm for Web Mining” IEEE Transactions on Fuzzy System, Vol.9 ,No.4, pp.595-607.
[36]Langheinrich, Marc,Nakamura, Atsuyoshi,Abe, Naoki,Kamba, Tomonari,Koseki, Yoshiyuki(1999)“Uninstrusive Customization Techniques for Web Advertising” Computer Networks, Vol.31, pp.1259-1272.
[37]Lee, Chung-Hong,Yang, Hsin-Chang(2001) “Developing an Adaptive Search Engine for E-Commerce Using a Web Mining Approach” Proceedings of International Conference on Information Technology, Coding and Computering, pp.604-608.
[38]Lin, Fu-ren, Hsueh, Chih-Ming(2001),“Knowledge Map Discovery in Virtual Communities of Practice”, The 12th International Conference on Information Management, Taiwan, National Taiwan University,A-2.
[39]Manber, Udi,Patel, Ash,Robison, John(2000) “Experience with Personalization on YAHOO!” Communications of the ACM, Vol.43, No.8, pp.35-39.
[40]Mobasher, Bamshad,Cooley, Robert,Srivastava, Jaideep(2000) “Creating Adaptive Web Sites Through Usage-Based Clustering of URLs” Proceedings of 1999 Workshop on Knowledge and Data Engineering Exchange, pp.19-25.
[41]Mobasher, Bamshad,Cooley, Robert,Srivastava, Jaideep(2000) “Automatic Personalization Based on Web Usage Mining” Communications of The ACM, Vol.43, No.8, pp.142-151.
[42]Mullich, Joe (1999)“Data Mining: Making Data Meaningful” IEEE Computer Application in Power, pp.18-25.
[43]Mulvenna, Maurice D.,Anand, Sarabjot, S.,Buchner, Alex G.(2000) “Personalization on the Net Using Web Mining” Communications of the ACM, Vol.43, No.8, pp.123-125.
[44]Ralambondrainy, H.(1995) “A Conceptual Version of the K-means Algorithm” Pattern Recognition Letters, Vol.16, pp.1147-1157.
[45]Rousseeuw, P.J., Kaufman, L., Trauwaert, E.(1996) “Fuzzy Clustering using scatter matrices” Computational Statistics and Data Analysis, Vol.23, pp.135-151.
[46]Rust, Roland T., Varki, Sajeev.(1996) “Rising from the Ashes of Advertising” Journal of Business Research, Vol.37, pp.173-181.
[47]Shardnand, U., Maes P.(1995) “Social Information filtering: algorithm for automating ‘wolds of mouth’” Proceeding of the ACM CHI Conference.
[48]Shaw, Michael J., Subramaniam, Chandrasekar, Tan, Gek Woo, Welge, Michael E.(2001) “Knowledge Management and Data Mining for Marketing” Decision Support Systems, Vol.31, pp.127-137.
[49] Feng, Tao,Murtagh, Flonn(2000)“Towards Knowledge Discovery from WWW Log Data” Proceedings of International Conference on Information Technology, Coding and Computing, pp.302-307.
[50]Tomlin, John A.(2000)“An Entropy Approach to Unintrusive Target Advertising on The Web” Computer Networks, Vol.33, pp.767-774.
[51]Wu, K. L., Yu, P. S., Ballman, A.(1998)“SpeedTracer﹕A Web Usage mining and analysis tool” IBM system Journal, Vol 37, No1.
[52]Wu, K. L., Aggarwal C. C., Yu, P. S.(2001)“Personalization with Dynamic Profiler” Third International Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems, pp.12 -20.
[53]Yoo, Sun-Joon, Kim, Joo-Ho (2001) “Is the Internet More Effective than Traditional Media? Facts Affecting the Choice of Media” Journal of Advertising Research, 2001 December, pp.53-59.
[54]中時電子報,MIC台灣網路廣告去年首度負成長,http://etnews.yam.com.tw/cgi-bin/?file=/news/200201/26/229708.html
[55]黃翔祺(2001),2001年第二季全世界上網人口達到4億5千9百萬人,http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=1762
[56]資策會FIND(2002),1996年起台灣歷年上網人口,http://www.find.org.tw/0105/howmany/usage_1.asp
[57]潘明君(2002),美國網路廣告成長可期,http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=1963
[58]潘明君,網路廣告引起網路購物者反感,http://www.find.org.tw/0105/news/0105_news_disp.asp?news_id=1871
[59]蕃薯藤2001網路大調查,http://survey.yam.com/survey2001
[60]蕃薯藤2002網路大調查,http://survey.yam.com/cnnic/2002-1.htm
[61]Dean, R.(1998) “Personalizing your web site” http://cnet.com/webbuilding/0-3-3885-5122920-1.html.
[62]Institute for Information Industry, http://www.iii.org.tw
[63]J-Express, http://www.molmine.com
[64]NCSA, http://www.ncsa.uiuc.edu
[65]W3C, W3c Extended Log File Format, http://w3.org/TR/WD-logfile.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top