跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳奈曄
研究生(外文):Nai Yeh Wu
論文名稱:多饋入源微波爐之加熱效率分析
論文名稱(外文):Heating Efficiency Analysis of a Multiple-Feed Microwave Oven
指導教授:李清和李清和引用關係
指導教授(外文):Ching Her Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:58
中文關鍵詞:微波加熱有限元素法加熱效率
外文關鍵詞:microwave heatingfinite element methodheating efficiency
相關次數:
  • 被引用被引用:1
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
微波加熱器之應用,常見於家用微波爐以及多數的工業用加熱設備中。儘管於加熱均勻性上仍值得探討,但微波加熱器機械結構簡單,可以靈活地適應於各種待熱負載,是其優點。而這些應用中爐體能量與饋入源之位置有密切之關係,並且深切地影響加熱之均勻度及待熱物加熱之效率。另外,負載特性對微波加熱效率亦有相當大的影響,應於設計時一併考量。
本研究利用HFSS (為一以有限元素法寫成之高頻結構模擬軟體)來進行微波爐加熱效率的模擬與數值分析,且以2.45 GHz作為腔體之工作頻率。我們分析了多模微波爐內於單一電磁源與多個電磁源饋入時,饋入源位置對加熱效率之影響,並探討爐內置有不同負載時,電磁源能量饋入之變化情形。研究結果顯示,利用場型匹配及阻抗匹配之觀念來決定電磁源饋入埠之位置可得到較佳之能量饋入效率。而當爐內加有損耗性之負載時,介電質損耗將使整個微波加熱爐之Q值降低,而介電常數之增加則會增大爐體之Q值。由模擬結果可知,饋入效率隨負載之介電質損耗增大而增加,而隨其介電常數之增大而減小。我們將研究結果整理歸納出一個微波加熱爐饋入埠位置設計上之指引,俾供此方面之研究或設計人員參考。

ABSTRACT
Microwave applicator is widely used in domestic and industrial applications as heating equipment. Although the heating uniformity is still a subject needs further study, the microwave applicator is favorable in heating application due to its simple mechanical structure and being able to fast heat a wide category of loads. For microwave heating applications, the heating uniformity and efficiency are strongly affected by the position of the feed waveguide. The efficiency of the microwave heating is also influenced by the electric characteristics of the load. Consequently, the above points should be considered in the design work.
In this research, the HFSS software, which was developed by AnsoftTM based on the finite element method (FEM), is utilized for analysis of the microwave applicator. The influence of the feed port position on heating efficiency of the multimode microwave applicator was studied. The concept of field pattern matching and impedance matching are used to decide the feed position of electromagnetic source. Considered structures including applicators with single as well as multiple source feeds. Besides the source feed position, the amount of power fed into the applicator is also affected by the electric characteristic of the load put in the cavity. In this work, the effect of the dielectric constant and the conductor loss of the load on the power feeding efficiency are examined. Results show that with the feed port placed at the position where the field pattern and impedance are matched, the power fed into the applicator will be increased. In addition, the power feed efficiency is higher for the applicator when loaded with higher loss material, but is lower if the heating object is of high dielectric constant. Results obtained in this work are expected to provide a useful guideline for engineers and designers working on the related topics.

目 錄
頁次
中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
圖 次 vii
表 目 錄 x
第一章 緒 論 1
1-1 概述 1
1-2 文獻探討 2
1-3 內容架構 8
第二章 研究問題描述與研究設計 9
2-1 研究問題之描述 9
2-2 研究設計 10
2-3 FEM理論解析 17
2-4 HFSS軟體的功能及使用上之注意事項 ……….20
第三章 微波爐能量饋入效率之分析 26
3-1 研究方法之驗證 26
3-2 單一饋入源時其位置與能量饋入效率之關係.…27
3-3 雙電磁源饋入時其位置與能量饋入效率之關係 30
3-4 三個電磁源饋入時其位置與能量饋入效率之關係 31
3-5 爐內加有負載時對微波功率饋入之影響 32
第四章 結論 52
參考文獻 54
作者簡歷 58

參考文獻
1. P. Y. Cresson, C. Michel, L. Dubois, M. Chive, and J. Pribetich, "Complete three-dimensional modeling of new microstrip—microslot applicators for microwave hyperthermia using the FDTD method," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2657-2667, Dec. 1994.
2. L. Ma, D.-L. Paul, N. Pothecary, C. Raipton, J. Bows, L. Barratt, J. Mullin, and D. Simons, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2565-2572, Nov. 1995.
3. P. J. Gartside, M. J. White, M. F. Iskander, C. J. Malarkey, and D.R. Treacy, "Numerical modeling and simulation of microwave heating processes," AP-S Int'l Symp., Dig. vol. 2, pp. 714-717, 1994.
4. L. Ma, N. M. Pothecary, and C. J. Raiton, "Application of the FDTD technique on microwave heating," 2nd Int'l Conf. on Computation in Electromagnetics, pp. 103-106, 1994.
5. T. V. Chow Ting Chan and H. C. Reader, "Modelling of modes and perspectives on multiple-feeds in microwave oven," J. of Microwave Power and Electromag. Energy, vol. 31, no. 4, pp. 238-250, 1996.
6. F. Peyre, A. Datta, and C. Seyler, "Influence of the dielectric property on microwave oven heating patterns: Application to Food Materials," J. of Microwave Power and Electromag. Energy, vol. 32, no. 1, pp. 3-15, 1997.
7. D. C. Dibben and A. C. Metaxas, "Finite element time domain analysis of multimode applicators using edge elements," J. of Microwave Power and Electromag. Energy, vol. 29, no. 4, pp. 242-251, 1994.
8. D. C. Dibben and R. Metaxas, "Time domain finite element analysis of multimode microwave applicators," IEEE Trans. Magnetics, vol. 32, no. 3, pp. 942-945, May 1996.
9. A. C. Metaxas, "Simulation of microwave heating using finite elements," IEE Colloquium on High Frequency Simulation in Practice, Digest no. 1997/010, pp. 2/1 - 2/3, May 1997.
10. Tse V. Chow Ting Chan and Howard C. Reader, "The effect of loads on typical multimode and single mode cavities," IEEE South African Symp. on Communication and Signal Processing, pp. 461-464, 1998.
11. A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating, IEE Power Engineering Series. Peter Peregrinus Ltd., London, no. 4, 1983.
12. D. Sullivan, "Three dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp.204-212, Feb. 1990.
13. P. C. Cherry and M. F. Iskander, "FDTD analysis of power deposition patterns of an array of interstitial antennas for use in microwave hyperthermia," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1692-1700, Aug. 1992.
14. D. Sullivan, "A frequency-dependent FDTD method for biological applications, " IEEE Trans. Microwave Theory Tech., vol. 40, pp. 532-539, Mar. 1992.
15. O. P. Gandhi, B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microwave Theory Tech., vol. 41, pp. 658-665, Apr. 1993.
16. 吳清揚、劉智群、張道治,"應用開槽陣列技術導致微波均勻加熱," 第五屆全國電腦與通訊研討會,論文集pp. IC-7~IC-12,民八十九年十月。
17. W. Fu. and A. Metaxas, "Numerical predication of three-dimensional power density distributions in a multi-mode cavity," J. of Microwave Power and Electromag. Energy, vol. 29, no. 2, pp. 67-75, 1994.
18. Harold S. Hauck, "Design considerations for microwave oven cavities," IEEE Transactions on Industry and General Applications, vol. IGA-6, no. 1, pp.74-80, Jan. 1970.
19. H. C. Reader, T. V. Chow, and T. Chan, "Experimental and numerical field studies in loaded multimode and single cavities," J. of Microwave Power and Electromag. Energy, vol. 33, no. 2, pp. 103-112, 1998.
20. S. M. Bondarenko, V. S. Bouryak, A. M. Leonov, V. N. Maltov, and B. Yastrebov, "Field analysis in multi-mode microwave heating chambers with several power inputs," International Conference on Electronics and Radio Physics of Ultra-High Frequencies, Proceedings, pp. 436-439, Moscow, 1999.
21. Ansoft, High Frequency Structure Simulator (HFSS) Training , (version 7), with optimetrics .

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top