跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佑澤
研究生(外文):Yo-Jer LIN
論文名稱:虛擬欲得系統之方法應用於近似解耦控制器設計
論文名稱(外文):Pseudo Desired Plant Approach to the Synthesis of Almost Decoupling Control
指導教授:楊介仙黃裕煒黃裕煒引用關係
指導教授(外文):Jieh-Shian YOUNGYue-Wei HUANG
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:88
中文關鍵詞:雙參數控制問題解耦控制問題麥氏階數內部穩定標準控制問題傳輸零點
外文關鍵詞:2-Parameter Control ProblemDecoupling Control ProblemMcMillan DegreeInternal StabilityStandard Control ProblemTransmission Zero
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在多數控制器設計的問題中,經過補償設計後,系統之內部穩定的要求是不可或缺的,而精確解耦之控制器設計,在多數的情形下,將致使隱藏模態(Hidden Mode)的極零點相消,產生內部穩定(Internal Stability)的問題(如受控系統存在右半平面之傳輸零點Transmission Zero),或是高階的控制器才可達成精確解耦的目的。經由以上的討論觀點,精確解耦之控制器設計是否有其必要性,是否可以在保持內部穩定,且影響性能表現最小的情況下,設計一低階控制器,達成上述需求?因此本文將提出近似解耦(Almost Decoupling)的概念,並以虛擬欲得系統(Pseudo Desired Plant)之方法,處理該問題,如此不但可滿足內部穩定的要求,性能亦不致影響太多,本文亦將以雙參數控制器設計問題(2-Parameter Control Problem)為範例,驗證所提之概念與方法,其模擬結果證實,近似解耦控制器的階數將小於受控系統及虛擬欲得系統階數之合,該控制器亦符合內部穩定與近似解耦的需求。

This thesis proposes the pseudo desired plant approach to the almost decoupling control problem. The internal stability of the compensated system is indispensable for most of all control syntheses. The exact decoupling will induce either pole-zero cancellations of the hidden modes or the higher McMillan degree of the compensator. It causes the problem of the internal stability if there exist transmission zeros. Therefore, the almost decoupling control synthesis is addressed. The 2-parameter control problem is considered. The results show that the McMillan degree of the feedback controller could be less than that of the controlled plant and the desired plant. This controller makes the compensated system both internally stable and decoupled almost. The algorithm of the almost decoupling control synthesis is also provided. In addition, two examples are given to illustrate the applicability of the algorithm.

目 錄
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖次 v
第 一 章 緒論 1
第 二 章 數學前導理論 4
第 三 章 近似解耦控制器設計 9
第 四 章 數學範例與系統實例 14
第 五 章 結論 18
Contents of English Version
Contents i
List of Figures ii
Chapter 1 Introduction 1
Chapter 2 Mathematical Preliminary 6
2.1 Standard Problem 6
2.2 Bezout Identities 9
2.3 Nehari Extension Problem 12
Chapter 3 Almost Decoupling Synthesis 25
3.1 Essential of Decoupling 25
3.2 Problem Formulation and Design Process 27
3.3 Numerical Example 33
Chapter 4 Simulation of Rotorcraft Flight Control 38
4.1 Problem Analysis and Formulation 38
4.2 Simulation Results 47
Chapter 5 Conclusions 54
Appendix 55
Bibliography 58
List of Publications 61

[1] P.L. Falb, and W.A. Wolovich, “Decoupling in the design and synthesis of multivariable control systems,” IEEE Transactions on Automatic Control, vol. 12, pp. 651-669, 1967.
[2] C.E. Lin and J.S. Young, “An improved pseudo state method for aircraft controller design,” in Proceedings of American Control Conference, Pittsburgh, Pennsylvania, U.S.A., pp. 128-133, 1989.
[3] A.S. Morse and W.M. Wonham, “Status of noninteracting control,” IEEE Transactions on Automatic Control, vol. 16, pp. 568-581, 1971.
[4] T.W.C. Williams and P.J. Antsaklis, “A unifying approach to the decoupling of linear multivariable systems,” International Journal of Control, vol. 44, pp. 181-201, 1986.
[5] C.A. Desoer and A.N. Gündes, “Decoupling linear multiinput multioutput plants by dynamic output feedback: an algebraic theory,” IEEE Transactions on Automatic Control, vol. 31, pp. 744-750, 1986.
[6] V. Eldem and B. Ozguler, “A solution to the diagonalization problem by constant precompensator and dynamic output feedback,” IEEE Transactions on Automatic Control, vol. 34, pp. 1061-1006, 1989.
[7] M. Cremer, “A precompensator of minimal order for decoupling a linear multivariable system,” International Journal of Control, vol. 14, pp. 1089-1103, 1971.
[8] D.N. Godbole and S.S. Sastry, “Approximate decoupling and asymptotic tracking for MIMO system,” IEEE Transactions on Automatic Control, vol. 40, pp. 441-450, 1995.
[9] J.S. Young, “Robust-decoupling design for rotorcraft flight control,” in Proceedings of PICAST, Tainan, Taiwan, R.O.C., 1993.
[10] X. Liu, “Input-output decoupling of linear time-varying singular systems,” IEEE Transactions on Automatic Control, vol. 44, pp. 1016-1021, 1999.
[11] X. Liu, X. Wang, and D.W.C. Ho, “Input-output block decoupling of linear time-varying singular systems,” IEEE Transactions on Automatic Control, vol. 45, pp. 312-318, 2000.
[12] G. Zames, “Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms and approximate inverse,” IEEE Transactions on Automatic Control, vol. 26, pp. 301-320, 1981.
[13] J.S. Young and C.E. Lin, “Refined H-optimal approach to rotorcraft flight control,” AIAA Journal of Guidance, Control and Dynamics, vol. 16, pp. 247-255, 1993.
[14] I. Postlethwaite, D.W. Gu, and S.D. O'Young, “Some computational results on size reduction in H design,” IEEE Transactions on Automatic Control, vol. 33, pp. 177-185, 1988.
[15] D.J.N. Limebeer and Y.S. Hung, “An analysis of the pole-zero cancellations in H∞-optimal control problems of the first kind,” Society for Industrial and Applied Mathematics, vol.25, pp. 1457-1493, 1987.
[16] D. McLean, “Automatic flight control systems,” Prentice Hall, New York, 1990.
[17] J.S. Young, “Rotorcraft flight control synthesis from robust decoupling approach,” 中國航空太空學會會刊, vol. 29, pp. 1-21, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top