跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴麗萍
研究生(外文):Li-Ping Lai
論文名稱:抽象經濟平衡點之應用
論文名稱(外文):The applications of equilibriua of abstract economics
指導教授:林來居林來居引用關係
指導教授(外文):Lai-Jiu Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:29
中文關鍵詞:抽象經濟Nash平衡點極大極小不等式廣義向量半平衡系統
外文關鍵詞:abstract economicsNash equilibriumminimax inequalitysystem of generalized vector quasi-equilibrium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們利用一群定義域不是緊緻集的最大元素存在定理,去建立一個抽象經濟平衡點定理.這個定理,可以應用到三個方面.首先,考慮定義域不是緊緻集且對應到兩個限制的多值映射Nash形式平衡問題.在此問題當中我們建立了包含了Nash平衡定理的存在結果;再來,考慮廣義向量quasi-equilibrium問題系統的存在定理.對這個問題的存在結果我們建立了一個一致性的表達方式;第三方面,應用到一群(多值)映射的極大極小不等式定理,在此問題中我們建立了包含KyFun極大極小不等式的存在定理.

In this paper, we apply a existence theorem of maximal elements for a family in which domains may not be compact to establish the existence theorem of abstract economics. We can apply it to three parts. One is to establish the existence theorem of Nash type equilibrium problem for multivalued mappings with noncompact domains and subject to two constraint. And the existence theorem of this problem include the Nash equilibrium theorem. Another is to establish the existence theorems and give a unified approach of system of generalized vector quasi-equilibrium problems. The other is to apply which to minimax inequality for a family of (multivalued) functions. Furthermore, the Ky-Fun minimax inequality is included in our existence theorem.

1. Introduction.........................................1
2. Preliminaries........................................4
3. Main results.........................................8
4. Applications to system of generalized vector quasi-equilibrium problems....................................16
5. Applications to minimax inequality for a family of functions...............................................22
6. References...........................................27

[1]
J. P. Aubin and A. Cellina, Differential Inclusions,
Spring-Verlag, Berlin, Heidlberg, New York, Tokyo, 1994.
[2]
Q. H. Ansari, S. Schaible and J. C. Yao, System of vector
equilibrium problems and its applications, J. of Optimization
Theory Appl., Vol. 107 No. 3 (2000), 547-557.
[3]
G. Debreu, {\it A social equilibrium theorem}, Proc. Nat. Acad.
Sci. U.S.A., Vol. 38 (1952), 386-393.
[4]
G. Debreu, Theory of Value, Yale University, New Haven, CT,
(1959).
[5]
P. Deguire and M. Lassonde, Families seletions, Topol.
Methods Nonlinear Anal., Vol. 5 (1995), 261-269.
[6]
P. Deguire, K. K. Tan, and G. X. Z. Yuan, The study of
maximal elements, fixed points for L_S-majorized mappings and
their applications to minimax and variational inequlities in
product topological spaces, Nolinear Analysis, Vol. 37 (1999),
933-951.
[7]
X. P. Ding, Existence of solutions for quasi-equilibrium
problems in noncompact topological spaces, Computers and
Mathematics with Applications, Vol. 39 (2000), 13-21.
[8]
K. Fan, A minimax inequality and its application, In
"Inequalities" (O. Shisha ed.), Vol. 3 (1972), Academic Press, New
York, 103-113.
[9]
B. S. Lee, G. M. Lee and S. S. Chang, Generalized vector
variational inequalities for multifunctions, Proceedings of
workshop on fixed point theory, Annales universitatis Mariae
Curie-Sklodowska, Lubin-Polonia Vol. L. I. 2 (1997), 193-202.
[10]
L. J. Lin, On the system of constrained competitive
equilibrium theorem, Nolinear Analysis, Vol. 47 (2001), 637-648.
[11]
L. J. Lin and S. F. Cheng, Nash type equilibrium theorems and
competitive Nash type equilibrium theorems, (to appear).
[12]
L. J. Lin and S. Park, On some generalized guasi-equilibrium
problems, J. Math. Anal. Appl., Vol. 224 (1998), 167-181.
[13]
L. J. Lin and Z. T. Yu, On some equilibrium problems for
multimaps, J. of Computational and Applied Math., Vol. 129
(2001), 171-183.
[14]
L. J. Lin, Z. T. Yu and G. Kassay, Existence of equilibria
for multivalued mappings and its applications to vectorial
equilibria, J. of Optim. Theory and Appl., Vol. 114(1) (2002), 189-208.
[15]
D. T. Luc and C. Vargas, A saddlepoint theorem for set-valued
maps, Nonlinear Analysis, Theory, Methods & Applications, Vol.
18 (1992), 1-7.
[16]
J. Nash, Noncooperative games, Annals of Math. Vol. 54
(1951), 286-295.
[17]
K. K. Tan, J. Yu and X. Z. Yuan, Existence theorems for
saddle point of vector valued maps, J. of Optimization Theory
Appl., Vol. 89 (1996), 731-747.
[18]
S. Y. Wang, Existence of a Pareto equilibrium, J. Optim.
Theory Appl., Vol. 79 (1993), 373-384.
[19]
S. Y. Wang, An existence theorem of a Pareto equilibrium,
Appl. Math. Lett., Vol. 4 (1991), 61-63.
[20]
J. Yu and G. X-Z. Yuan, The study of Pareto equilibria for
multiobjective games by fixed point and Ky Fan minimax inequality
methods, Computers Math. Applic., Vol. 35 (1998), 17-24.
[21]
X. X-Z. Yuan, The existence of Equilibria for noncompact
games, Applied Mathematics Letters, Vol. 13 (2000), 57-63.
[22]
X. Z. Yuan and E. Tarafdar, Non-compact Pareto equilibria for
multiobjective gamed, J. of Mathematical Analysis and
Applications, Vol. 204 (1996), 156-163.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top