跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊美芳
研究生(外文):Mei-Fang Yang
論文名稱:多值映射之史丹巴西亞及明梯形態之平衡點存在定理
論文名稱(外文):The Existence Theorem of Equilibria of Stampacchia type and Minty type for Mulivalued Mappings
指導教授:林來居林來居引用關係
指導教授(外文):Lai-Jiu Lin
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:數學系
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:27
中文關鍵詞:平衡點存在定理史丹巴西亞形態平衡點明梯形態平衡點
外文關鍵詞:the existence theorem of equilibriumStampacchia type equilibriumMinty type equilibrium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這一篇論文裡,我們首先建立史坦巴西亞型式的平衡點存在定理,然後利用最大值定理去建立明梯型式的平衡點存在結果,並且利用一個平衡點定理建立另一種沒有限制條件的明梯型式的平衡點存在定理。

In this paper, we first estabilish the existence results of the Stampacchia type equilibrium problems. Then we apply the maximal element theorem to establish the exisence theorems of Minty type equilibrium problems. We also establish another existing results of the Minty type without constrainted correspondence by an equilibrium theorem.

1.Abstract and Introduction……………1
2.Preliminaries……………………………4
3.Stampacchia type Equilibrium Problems
…………………………………………6
4.Minty type Equilibrium Problems
…………………………………………15
Reference……………………………………26

[1] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, (1980).
[2] F. Gianessi, On Minty variational principle, In F. Gianessi, S. Komlo'si, and T. Rapcsa'k, editors, New Trends in Mathematical Programming, Kluwer Academic Publishers, Dordrecht, (1998).
[3] G. Kassay and J. Kolumb'an, Variational inequalities given by semi-pseudomonotone mappings, Nonlinear Analysis Forum, 5 (2000), 35-50.
[4] G. Kassay, T. Kolumb'an and Zs. Pa'les , Factorization of Minty and Stampacchia variational inequality systems, to appear in European Journal of Operations Research.
[5] H. Kneser, Sur une th'eoreme fondamental de la th'eorie des jeux, Comptes Rendus de L'Acad. des Sci. de Paris 243 (1952), 2418-2420.
[6] J. P. Aubin and A. Cellina, Differential inclusions, Springer-Verlag, Berlin, Heidberg, New York, (1994).
[7] L. J. Lin and Z. Y. Yu, On some equilibrium problems for multimaps, J. Comput. Appl. Math. 129 (2001), 171-183.
[8] L. J. Lin, Z. Y. Yu and G. Kassay, Existence of equilibria for multivalued mappings and its applications to vectorial equilibria, J. of Optim. Theory and Appli. 114(1) (2002), 189-208.
[9] P. Deguire, K. K. Tan, G. X. Z. Tuan, The study of maximal elements, fixed points for Ls-majorized mappings and their applications to minimax and variational inequalities in product spaces, Nonlinear Analysis 37 (1999), 933-951.
[10] Q. H. Ansari and J. C. Yao, A existence result for the generalized vector equilibrium problem , Appl. Math. Lett., 12(8) (1999), 53-56.
[11] S. Komlo'si, On the Stampacchia and Minty variational inequalities, In G Giorgi and F. A. Rossi, editors, Generalized Convexity and Optimization for Economic and Financial Decisions. Pitagora Editrice, Bologna, (1999).
[12] Y. C. Yao, Multi-valued variational inequalities with K-pseudomonotone operators, Journal of Optimization Theory and Applications, 883 (1999), 391-403.
[13] Y. Q. Chen, On semi-monotone operator theory and applications, Journal of Math. Anal. and Appl. 231 (1999), 177-192.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文