|
1.Lai-Jiu Lin, On generalized loose saddle point theorems for set valued maps, Proceeding of Nonlinear Analysis and Convex Analysis, World Scientific, Niigata, Japan, 1999. 2.D. T. Luc and C. Vargas, A saddle point theorem for set-valued maps, Nonlinear Anal. Theory, Meth. Appl. , 18 (1992), 1-7. 3.T. Tanaka, Generalized quasiconvexities, cone saddle points and minimax theorem for vector-valued functions, J. Math. Anal. Appl., 81, 355-377, (1994). 4.T. Tanaka, Minimax theorems of vector-valued functions, In Nonlinear Analysis and Mathematical Economics,(Edited by W. Takahashi),RIMS, Vol. 861, Kyoto University, Kyoto,Japan,(1994). 5.T. Tanaka, Existence theorems for cone saddle points of vector-valued functions in infinite dimensional spaces, J. Optim. Theory and Appl. 62, 127-138,(1989). 6.T. Tanaka, Two types of minimax theorems for vector-valued functions, J. Optim. Theory and Appl. 68, 321-334, (1991). 7.F. Ferro, A minimax theorem for vector-valued functions (I), J. Optim. Theory and Appl. 60,19-31 (1989). 8.F. Ferro, A minimax theorem for vector-valued functions (II), J. Optim. Theory and Appl. 68, 35-48 (1991). 9.D. S. Shi and C. Ling, Minimax theorems and cone saddle points of uniformly same-order vector-valued functions, J. Optim. Theory Appl. 84, 575-587. 10.K. K. Tan, J. Yu and X. Z. Yuan, Existence theorems for saddle points of vector valued maps,J. Optim. Theory and Appl. 89, (1996), 731-747. 11.S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in " Fixed point theory and applications " (K. K. Tan eds), World Scientific, Singapore, (1992), 248-277. 12.D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematical,Systems, Vol. 319, Springer, Berlin, 1989. 13.Y. Chiang, O. Chadli and J. C. Yao, On the existence of quasi implicit vector variational inequalities, Journal of Optimization Theory and Applications, 2002(to appear). 14.A. Ben-Israel and B. Mond, 'What is invexity' , J. Austral. Math. Soc. 28(1986), 1-9. 15.M. A. Hanson, 'On the sufficiency of the Kuhn-Tucker conditions', J. Math. Anal. Appl. 80(1981),545-550. 16.L. J. Lin and Z. T. Yu, On generalized vector quasi-equilibrium problems for multimaps, J. Computational and Applied Math. 129,(2001),171-183. 17.J. P. Aubin, A. Cellina, Differential Inclusion , Springer, Berlin, (1994). 18.Lin, L. J., Generalized Quasi-Equilibrium Problems for Multimaps, Proceeding of International Conferences of Optimizations: Technical and Applications, 1998. 19.B. S. Lee, G.M. Lee and S. S. Chang, Generalized vector variational inequalities for multifunctions, Proceedings of workshop on fixed point theory, Annales universitatis Mariae Curie-Sklodowska, Lubin-Polonia Vol. L. I. 2(1997), 193-202. 20.Tan, N. X., Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, Vol. 122, pp.231-245, 1985. 21.W. S. Massey, Singular Homology Theory , Springer Verlag, New York, 1980. 22.K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces , Pro. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. 23.S. S. Chang, G. X. Z. Yuan, G.H. Lee and Xiao Lan Zhang, Saddle Points and Minimax Theorems for Vector-Valued Multifunctions on H-spaces, Applied Mathematics Letters, Vol. 11, No.3, pp. 101-107 (1998). 24.K. R. Kazmi and S. Khan, Existence of solutions for a vector saddle point problem,Bull. Austral. Math. Soc. Vol. 61(2000) 201-206.
|