跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林楷植
研究生(外文):Lin Kai-Chih
論文名稱:發展二段式紙筆測驗探討國中學生「力與運動」之迷思概念
論文名稱(外文):The development of two-tier diagnostic instrument exploring junior high school students’ misconceptions on force & motion
指導教授:陳錦章陳錦章引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系在職進修專班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:160
中文關鍵詞:紙筆測驗迷思概念力與運動二段式測驗
外文關鍵詞:written testmisconceptionforce and motiontwo-tier test
相關次數:
  • 被引用被引用:47
  • 點閱點閱:821
  • 評分評分:
  • 下載下載:242
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在發展二段式紙筆診斷測驗,藉以探討中部地區國中二、三年級學生有關「力與運動」的迷思概念。期能藉由診斷工具的發展,了解國中二、三年級學生有關「力與運動」迷思概念,和迷思概念的分佈情形,以提供科學概念教與學上的參考。本研究首先蒐集學生對紙筆測驗的回答,並對學生晤談,然後把資料分項歸類,挑出學生常有的迷思概念,再編製成二段式診斷性測驗工具。正式施測樣本為中部四縣市十所國中,二、三年級學生共691人。
本研究發現學生主要的迷思概念有:
1. 接觸力
物體所受水平推力變大時,動摩擦力也會跟著變大。兩物體間作用力之大小與接觸面積大小有關。
2. 萬有引力
在地表附近,上拋物體於上升過程中,引力和重力加速度會跟著改變,造成物體變輕或變重。當上拋物體上升到最高點時靜止不受力。
3. 牛頓第一定律
物體因為慣性,所以維持原先的運動狀態。
4. 牛頓第二定律
運動中的物體是因為有力量持續作用的關係,且運動速度與所受外力成正比。重量愈重,下墜的時間會愈短,速度愈快。
5. 牛頓第三定律
作圓周運動的物體,在外力解除後,因為離心力的作用使其偏離軌道。作用力、反作用力的大小與物體重量及施力情形有關。
The purpose of this study was to develop a two-tier misconception diagnostic written test as the tool for examining the misconceptions of Force and Motion among the second and third graders of junior high school. Through the development of the diagnostic tool, it was hoped to understand the origin and the distribution of the misconceptions among the students, which may hereby provide as a reference for future teaching and learning on scientific concepts. Through the interviews and written answers, major misconceptions were selected, and then the two-tier written instrument was built. The subject included 691 students of the second and third graders from ten junior high schools in central Taiwan.
The results of this study on the major misconceptions of the students were:
1. Contact force
When the horizontal force on the object gets bigger, the friction will get bigger as well. The force effect between two objects has relations with the contact surface areas.
2. Gravitation
When the object elevates or descends, the gravity will change too, which makes the object lighter or heavier, and the acceleration of gravity will change. When the object elevates to the top, it is motionless without force effect.
3. Newton’s first law
Inertia makes the object keeps its original movement.
4. Newton’s second law
The motions of objects accompany the existence of force, and the velocity of object is proportion to the external force. The more of the weight, the shorter of the falling time and the faster of the speed.
5. Newton’s third law
The velocity of an object is in direct proportion to the effect of external force. The magnitude of force and reacting force is related to object’s weight and imposing force.
.
The development of two-tier diagnostic instrument exploring junior high school students’ misconceptions on force & motion
Lin Kai-Chih
Abstract
The purpose of this study was to develop a two-tier misconception diagnostic written test as the tool for examining the misconceptions of Force and Motion among the second and third graders of junior high school. Through the development of the diagnostic tool, it was hoped to understand the origin and the distribution of the misconceptions among the students, which may hereby provide as a reference for future teaching and learning on scientific concepts. Through the interviews and written answers, major misconceptions were selected, and then the two-tier written instrument was built. The subject included 691 students of the second and third graders from ten junior high schools in central Taiwan.
The results of this study on the major misconceptions of the students were:
1. Contact force
When the horizontal force on the object gets bigger, the friction will get bigger as well. The force effect between two objects has relations with the contact surface areas.
2. Gravitation
When the object elevates or descends, the gravity will change too, which makes the object lighter or heavier, and the acceleration of gravity will change. When the object elevates to the top, it is motionless without force effect.
3. Newton’s first law
Inertia makes the object keeps its original movement.
4. Newton’s second law
The motions of objects accompany the existence of force, and the velocity of object is proportion to the external force. The more of the weight, the shorter of the falling time and the faster of the speed.
5. Newton’s third law
The velocity of an object is in direct proportion to the effect of external force. The magnitude of force and reacting force is related to object’s weight and imposing force.
.
參考文獻
一、中文部分
Treagust(2000):八十九年度(南區)科學概念學術研討會會議手冊。國科會科教處。
王文科主譯(Hergenhahn, B. R.著)(1991):學習心理學─學習理論導論。台北:五南。(原著為1988年版)
王淑琴(1993):利用D O E晤談探究大學生電學方面的另有架構。國立彰化師範大學科學教育研究所碩士論文。
杜嘉玲(1999):概念發展─古典論與連結論。國立中正大學哲學研究所論文。
林生傳(1997):我國學生概念發展的水準與特徵研究。國立高雄師範大學教育學系教育學刊,13,47-82。
林振霖(1992):我國學生分子概念發展與診斷教學的研究。彰師學報,3,407-478。
林組明(2002):桃園地區國民小學六年級學生有關摩擦力之概念研究。國立台北師範學院數理教育研究所碩士論文。
吳芝儀、李奉儒譯(1995):質的評鑑與研究。台北桂冠圖書公司。
吳武雄(1990):利用晤談方式探查國中學生對重要物理概念的另有架構之研究。
吳慧娟(2001):利用臨床晤談法探究國小二年級至五年級兒童之地心引力另有架構研究。國立台北師範學院數理教育研究所碩士論文。
洪瑞英(1998):高中生的「化學平衡」概念之研究。國立高雄師範大學科學教育研究所碩士論文。
洪振方(1996):科學知識重建的認知取向分析。國立高雄師範大學學報,7,293- 328。
許健將(1991):利用二段式測驗探查高三學生有關共價鍵及分子結構之迷思概念。國立彰化師範大學科學教育研究所碩士論文。
陳淑敏(1995a):Vygotsky的心理發展理論和教育。屏東師院學報,7,119-144。
陳淑敏(1995b):Vygotsky「最近發展區」概念內涵的探討。國立屏東師範學報,8,505-526。
陳錦章(2001):國高中學生在力學概念學習之研究:力與運動(Ⅰ)。行政院國科會專題研究計劃,NSC89-2511-S-018-035。
陳錦章(2002):國高中學生在力學概念學習之研究:力與運動(Ⅱ)。行政院國科會專題研究計劃。
陳瓊森、汪益譯(1995):超越教化的心靈。台北:遠流出版社。
郭玉生(1987):心理與教育研究法。台北縣:精華書局。
郭重吉(1990):學生科學知識認知結構的評估與描述。彰化師大學報,1, 280-319。
郭重吉(1992):從建構主義的觀點探討中小學數理教學的改進。科學發展月刊,20(5),548-568。
張春興(1996):教育心理學。台北:東華書局。
張銘傑(1997):利用概念聯想晤談法來探究國二學生的浮力概念及概念結構。國立高雄師範大學科學教育研究所碩士論文。
張容君(2001):發展二段式紙筆測驗探討國中學生燃燒之概念。國立高雄師範大學科學教育研究所碩士論文。
黃台珠(1984):概念的研究及其意義。科學教育月刊,66期,PP. 45-56.
黃振華(2001):三至八年級兒童牛頓第三運動定律相關概念之研究。國立高雄師範大學物理學系研究所碩士論文。
彭泰源(1999):國小五年級學童「力與運動」概念學習之研究。彰化師範大學科學教育研究所碩士論文。
楊其安(1989):利用臨床晤談探究國中學生對力學概念的另有架構。國立彰化師範大學科學教育研究所碩士論文。
熊召弟、王美芬、段曉林、熊同鑫譯(S.M. Glynn, R.H. Yeany & B.K. Britton著)(1996)。科學學習心理學。台北市:心理出版社。
董正玲(1991):利用晤談方式探究國小兒童運動與力的另有架構。國立彰化師範大學科學教育研究所碩士論文。
鄭湧涇(2000):Using a diagnostic assessment instrument to assess understanding of biology concepts。八十九年度「自然科學概念學習研究工作坊」會議手冊,PP.1-32。國立台灣師範大學。
蔡玟錦(1991):發展紙筆測驗以探究高三學生對化學平衡的迷思概念。國立彰化師範大學科學教育研究所碩士論文。
謝秀月(1995):師院非數理系學生熱與溫度概念架構之探討。國立台南師範學院學報,28,479-507。
魏明通(1997):科學教育。台北市:五南出版社。
鍾文勳(2002):國民小學高年級學童對運動速率與力另有概念之研究。國立台北師範學院數理教育研究所。
鍾聖校(1992):認知心理學。心理出版社。
饒見唯(1994):知識場論。台北:五南。
二、英文部分
Abimbola, I. O. (1988). The problem of terminology in the studey of student concept -ions in science. Science Education, 72, 175-184.
Ausubel, D. (1968). Educational Psychology: A cognitive view. New York: Holt, Rinehart & Winston.
Barrass, R. (1982). Some misconceptions and misunderstandings perpectuated by teacher and textbooks of biology. Journal of Biological Education, 18, 201-206.
Blosser, P. (1987). Science misconception research and some Implication for the teach- ing to elementary school students, ERIC ED 282776.
Bruner, J. B., Goodnow, J. J. and Austin G. A. (1977). A Study of Thinking. N. Y. John Wiley.
Carr, M. (1996). Interviews about instances and interviews about events. In D.V.
Champagne, A. B. , Klopfer , L. E. & Anderson , J. (1980). Factors influencing the learning of classical mechanics. American Journal of Physics, 48, 1074-1079.
Champagne, A. B., Klopfer, L. E., Desena, A. & Squires, D. (1978). Content struct -ure in science instructional materials and knoeledge structure in students’ memory. University of Pittsburgh, Learning Research and Development Center Publication Series.
Clement, J. B., David E., and Zietsman, A. (1989). Not all preconceptions are miscon- captions: finding “Ancjoring Conception” for grounding instruction on students’ intuition. ED307134 SE050589.
Clough , E. E. & Robinson, C.(1985). Children’s understanding of inheritance. Journal of Biological Education, 19(4), 304-310.
Driver, R. (1981). Pupils’ alternative frameworks in science. European Journal of Science Education, 3(1), 93-101.
Driver, R. & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues on the study of students’ conceptual frameworks in science. Studies in Science Education, 10, 37-60.
Driver, R. (1981). Pupils’ alternative frameworks in science. European Journal of Science Education, 3(1), 251-257.
Driver, R. (1985). Beyond appearances: the conservation of matter under physical and chemical transformations. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp.145-169). Philadelphia: Open University Press.
Fisher, K. M. (1985). A misconception in biology: amino acids and translation. Journal of Research in science Teaching, 22(1), 53-62.
Gilbert, J. K., & Osborne, R. J. & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623-633.
Gunstone, R. F. (1990).Children’s science: A decade of developments in constructivist views of science teaching and learning. The Australian Science Teachers Journal,36(4),9-19.
Gunstone, R. F. & White, R. T. (1981). Understanding of gravity. Science Education, 65(3), 291-299.
Hackling, M. W. & Garnett, P. J. (1985).Misconceptions of chemical equilibrium. European Journal of Science Education, 7(2), 205-214.
Head, J. (1986) Misconceptions in physics among South African students. Physics Education, 15(2), 92-105.
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
Howe A. C. (1996). Development of Science Concepts within a Vygostskian Framework. Science Education, 80(1),35-51
Klausmeier, H. J. (1979). Cognitive Learning and Development: Information- processing and Piagetian perspectives. Washiongton, D. C.: Office of Education.
Klausmeier, H. J.,Ghatala, E. S. & Frayer, D. A. (1974).Conceptual learning and development; A cognitive approach .New York: Academic Press.
Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics. Teacher College Press.
Maloney, D. P. (1995). Rule-governed approaches to physics-Newton’s third law. Physics Educatiov, 19(1), 37-42.
McDermott, L. C. (1984).Research on conceptual understanding in mechanics. Physics Today. July, 24-32.
Novak, J. D. (1977). A Theory of Euucation. Ithaca, NY: Cornell University Press.
Novak, J. D. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77-101.
Osborne, R. J., Bell, B. F. & Gilbert, J. K. (1983).Science teaching and children’s views of the world. European Journal of Science Education, 5(1), 1-14.
Osborne, R. J. & Freyberg, P. (1985). Learning in science: the implications of children’s science. Heinemann, Auckland and London.
Pella, N. O. (1975).Concept of concept, University of Wisconsin-Medison. West, L.H.T. (1982). The researchers and their work. In Sutton and L. West (Eds), Investigating children’s existing ideas about science. Leicester: University of Leciester, School of education.
Peterson, R. F. & Treagust, D. F. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and -12 students’ misconcept- ions of covalent bonding and structure. Journal of Chemical Education, 66(6), 459-460.
Pines, A. L. & West, L. H. T. (1986). Conceptual understanding and science learning: an interpretation of research within a sources-of-knowledge framework. Science Education, 70(5), 583-604.
Preece, P. (1984). Intuitive science: learned or triggered? European Journal of Science Education, 6, 7-10.
Reif, F. (1987). Interpretation of scientific or mathematic concepts: cognitive issues and instructional implications. Cognitive Science, 11, 395-416.
Smith, E. L. (1987). What besides conception needs to change in conceptual change learning? In J. D. Novak (Ed.), Proceedings of the second international seminar on Misconceptions and Teaching Strategies in Science and Mathematices. Cornell University, Ithaca, NY.
Shuell, T. J. (1986). Cognitive conceptions of learning. Review of Educational Research, 56, 411-436
Stead, K., & Osborne, R. (1980). Friction. Learning in science project, Mankato University, Hamilton. ERIC Document Reproduction Service No. ED 235027.
Stewart, J. H.(1980) . Techniques for assessing and representing information on cognitive structure, Science Education , 64(2), 223-235.
Strike, K. A. & Posner, G. J. (1983). Understanding form a conceptual change point of view. Paper presented at the annual meeting of the American Educational Research Association, Montreal.
Sutton, C. & West, L. (1982).Investigating children’s exiting ideas about science. (ERIC Document Reproduction NO:ED230424).
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10(2), 159-169.
Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn(Ed.), Learning Science in the Schools: Research Reforming Practice (pp.326-345). Lawerence Erlbaum Associates Publishers.
Watts, D. M. & Zylbersztajn. A. (1981) .A survey of some children’s ideas about force. Physics Education , 16, 360-365 .
Watts, D. M. (1982). A study of school children’s alternative frameworks of the concept of force. European Journal of Science Education, 4(2), 217-230.
Weatley, G. H. (1991). Constructivist perspectives on science and mathematics learning. Science Education, 75 (1), 9-21.
White, R. & Gunstone, R. (1992). Probing understanding. The Flmer Press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top